
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

1995-09

Application of a mechanical verification
system to a high-speed transport protocol

Pederson, Carl M.
Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/7580

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

APPLICATION OF A
MECHANICAL VERIFICA TJON SYSTEM

TOA
HIG H-SPEED TRANSPORT PROTOCOL

by

Car! M. Pederson, Jr.

September 1995

T hesis Advisor: Dennis Volpano

Approved for public n!lease; distribution i .~ unlimited.

-' ' I">I EY KNOX LIBRARY
_ '.~ pa~TQRADUATE SCHOOL

"r>lTE.REY CA 93943-5101

REPORT DocmmNTATJON PAm:

2. REPORT DATE J.AEPORTTYPE .o.NIlOATESCOVERED
Sc tember 1995 Master's Thesis

4. TITLE AND susnnE
APPLICATION OF A MECHANICAL VERIFIC<I.,T10N SYSTEM
TO A HIGH-SPEED TRA:\'SPORT PROTOCOl.

6. AUTHORIS)

Pederson, Carl. M .. .IT

1. PERFORMING MGANlZATION NAMEIS) AND AOOAESS{ES)
Naval Postgraduate School
Monterey, CA 93943-5000

11. SUPPUOMENTARYNOTES

I . PERFORMING ORGANIZATION
AEPORTNU"'BER

1C,SPONSORING/MONITORING
AGENCYREf'ORTN UM SER

r he views expressed in this thesis are those of the author and do not refl ect the official policy or position
of the Dcpilrtment of Defense ur tile Unill:d Slate~ GUH~mment.

12., D1STRIBlJTIONI AVAIL .r. SILITYSTATEMENT

Approved for puhlic release; distrihution is unlimited

L'L

~t~t\dard Form 2,)~ (Rc >'. 2- 3~)
Fr", cri~ib}'AKSjSt".n>.J3

Author:

Approved by:

Approved for public release; distribution is unlimited

APPLICATION OF A
MECHANICAL VERIFICATION SYSTEM

TOA
HIGH-:SPEED TRANSPORT PROTOCOL

Carl M. Pederson. l r
Commander, fhni ted States Navy

B_A. , Whitman College. 1977

Submitted in partial ful fi ll ment of the
requirements for the degree of

MASTER OF SCIENCIi: IN COMPUTER SCIENCE

from the

NA VAL POSTGRADUATE SCHOOL

September 1995

Ted Lewis, Chairman,
Depanment of Computer Science

ABSTRACT

OUOLEY KNOX LJBRA.RY
NA.VAL POSTGRAOUATE SCHOOL
MONTEREY CA ~1 01

The high-specd transport protocol, SNR, has never been completely analyzed.

SNR's design incorporatcs a novel feature, specifically, periodic and frcquent ex.change

of state information to coordinate the actions of the transmitter and receiver. This

innovation ex.ploits the higher bandwidth of modem fiber-optic networks to increase data

transmission rates

Traditional methods used to verify SNR have been largely unsuccessful because

of the protocol's inherit complex.ity. The protocol fu nctions as an asynchronous

concurrent system and for that reason we apply a mechanic al verification tool called

Murphi. The Murphi Verification System is used to verify two phases of SNR, the

connection es\.ablishment phase and data transfer phase operating under Mode 0 (no

error or flow control) and Mode 1 (flow control onlYl. The connection establishment

phase functions as intcnded. Murphi detected apparent design flaws in both Mode 0 and

Mode 1 of the data transfer phase. Buffer overflow can occur in Mode 1. An unexpected

termination of the cOllilectiotJ by the receiver is possible in both modes. The feasibili ty of

applying Murphi to vcrify communication protocols in general is also addressed.

TABLE OF CONTENTS

I. INTRODUCTIO:-<

A BACKGROUND
B. OBJEL"TIVES
C THE RESEARCH QUESTION
D. SCOPE, METiiODOLOGY, AND LLT\llT ATiONS
E. RELATED WORK
F.ORGANIZATIO:'-J

II. COKCURRENCY CONCEPTS" .

A. FUNDAMENTALS
I. General
2. States and Transilions

III. VERIFICATION OF CONCURRENT SYSTEMS

IV. THE MURPH! VERIFJCATION SYSTEM

A OVERVIEW
B. MURPH! DESCRlPTION LANGUAGE CONSTRUCTS

1, Declaration Pan
2. RuJcs
J, St.lr15late

4. lnvariant
C. SPECIAL PURPOSE VERIFIER

I . State Generation and Property Cbecking
1. Execution Report

D. APPLICATION Of:-.1URPHI TO MlJIlJAL EXCLUSION

V. TIfE SNR TRANSPORT PROTOCOL ..

A. INTRODUCTION
B. DESiGN FEATIJRES

11
12

.. 16

. . 25

25
26

"
. 28
. 28

.... 28

" 29

.. J7

I. Periodic Slale Exchange._ ..

VI, VERlFlCATION - CONNECTION ESTABLISHMENT PHASE OF SNR

3,S\artslale.
-'I . Invariants .. .

F, REStn.TS ...

VII. VERIFICA nON -- FLOW CON"ffiOL MODE OF SNR

VIII. CONCLUSIONS AND RECOMMENDATION ..

A Eci~~~~~~r:rLs
APPENDIX A. DEADLOCKEXECUTJONTRACE .

APPENDIXB , BUFFEROVERFLOWEXEClJnONlRACE ., .

LIST OF REFERENCES.

rNTIlAL OISTRlBlJTlON LIST

72

.75

93

99

. 107

LIST OF FIGURES

I State Transitions Leading to MlJEX Violation
Block Diagram of SNR
Machine TI State Diagram
Machine 12 Slate Diagram
Machine T3 State Diagram
Machine R I State Diagram
Machine R2 State Diagram
Machine R3 State Diagram

9 Machine T4·· Host interface
10 Machine T2 -- Transmitter COlUlection Management
II . Machine R2 -- Receiver Connection Management ..
12. Machine T1 State Diagram , ..
13 , Machine T2 State Diagram
14. Machine R 1 Stale Diagram
15. Machine R3 State Diagram

I I
41

. 48
49

52
53

62
. 63

78

LIST OF TABLES

I Desired Properties for Mutual Exclusion Algorithms
2 Explanation of Rules for Mutual Exdusion Description

Variables and Data Structures
6 Transitions for :Machine Tl
7 Transitions for Machine T2
8 Transitions for Machine T3
9. Transitions for Machine Rl
10. Transitions for Machine R2
II. Transitions for Machine R3
12. Data Transfer Example . .
13 . Connection Establishment Messages
14. Connection Establishment Phase Variables.
15. Connection Establishment Phase Procedures
16, Machine T4 Connection Establishment PAT
17 , Machine T2 -- Connection Establishment PAT
18, Machine R2 Connection Establishment PAT
19. Connection Establishment Phase Properties
20. Events Leading to Unexpected Condition
21 . Transitions for Machine 11
22. Transitions fOf Machine T2 . .
23 . Transitions for Machine Rl
24 . Transitions for Machine R3

32

47
48
49
50
51
52

56
59

.. 60
6 1
61
62
63

72
76
77
77

. 78

I. INTRODUCTION

A. BACKGROUND

When building a program or system, proper operation of the entity is desired

However, often it does not behave as expected. The improper behavior may be the result

of a flawed conceptual design used as the basis fOf the implementation. Detecting and

eliminating errors in the design and implementation of a program or system greatly

enhances the likeUhood it will function correctly_ It is very difficult to assure a non-trivial

program is free of logical errors Concurrent systems -- such as a conununicalion

protocol-- tum oul to be some oflhe most complex programs

Checking the correctness of a concurrent program is usually extremely challenging

Manual analysis methods are often inadequate because orlhe inherent complex.ity_ Testing

techniques, such as simulation, fall short because of the difficulty of exercising aU possible

interactions in the context of nondeterministic execution. Computer aided verification

techniques and tools have been developed to address the problem One such automatic

tool is the Murphi Verification System developed by 0, Dill et al, [DDHY92]

The Murphi Verification System allows the user to specifY properties for a finite

state asynchronous concurrent system and then check whether they are violated by the

system. The properties to be checked, the initial conditions, and allowable state

transitions of the system being verified are wrinen in the Murphi Description Language

The Murphi Compiler is then used to produce an executable program that will: I)

generate all system states, 2) check the invariance of the designated properties in each of

these states, and 3) report violations of correctness properties. Verifiable properties

include the absence of deadlock, mutual exclusion, and others specified by the tool user

which are considered important to the desired behavior ofthe concurrent system being

examined

This thesis verifies the design of a non-trivial concurrent system, specifically, the

high speed transport protocol SNR [NRS90]. SNR may playa significant role in the

context of very high-bandwidth communications made possible by optical fiber SNR' s

design incorporates a novel feature, specifically, periodic and frequent exchange of state

information to coordinate the actions of the transmitter and receiver, This innovation

exploits the higher bandwidth of modern networks to increase data transmission rates.

The essential properties of SNR have not been verified, or for that matter even

adequately formalizeO. Attempts to verifY that the protocol is free oflogical errors have

produced only limited results [McAr92], [Tipi93], The analysis ofSNR, described in

these two documents, was conducted without first rigorously asserting specific properties

being examined. A more structured approach, with verification as the primary goal,

should to be taken. There is without question, a need to begin identifying key properties,

formally describing them, and finally verifying that SNR has these properties

B. OBJECTIVES

Because of the complexity of communication protocols, formal verification of a

protocol's design is typically not attempted. Instead testing techniques such as simulation

are often used to determine if the protocol will operate as expected A relatively mature

mechanical verification system has yet to be applied to SNR

The primary objectives of this thesis are

• identify and develop formal specifications of key properties ofSNR, and

• verify these properties using the Murphi Verification System

A secondary objective is to explore the feasibility of applying a mechanical

verification tool, such as Murpru, to communication protocols

C. THE RESEARCH QUESTION

This thesis will attempt to answer the following specific questions

• What particular properties must SNR exhibit to ensure proper behavior when
used as the transport layer for a high speed communication network'!

Is SNR's behavior consistent with these desired properties?

• What properties of the protocol can be checked with Murphi?

Are there properties that can not be checked? If so, what limitations in the tool
prevent their verification?

State-space explosion is likely to be encountered. Can state-space reduction
methods be employed to overcome the problem, if it occurs?

What advantages and disadvantages are inherent to the application of automatic
verifiers to protocols?

D. SCOPE, METHODOLOGY, AND I.IMITATIONS

This thesis examines the high speed transport protocol, S"!\!"R as presented in

[NRS90]. No attempt is made to improve upon or redesign the protocol. The focus is

verifYing SNR's design, not discussing the strengths or weakness of a specific protocol

Since success in the application of Murphi to SNR is uncertain, the verification is

conducted in stages. The least complex aspe<.'ts of S"N""R are examined first. This approach

facilitates the early identification of potential "show stoppers" and allows work done in the

initial steps to serve as a foundation for the later and more complicated stages.

Inconsistencies in the original specification of SNR and state space explosion

prevented exhaustive verification of SNR. Verification is limited to the connection

establishment phase of SNR., and two of the three operating modes of SNR 's data transfer

phase (Mode 0 -- no error or flow control and Mode I -- flow control only). SNR's data

transfer phase operating in Mode 2 (both flow control and error enabled) is not verified

The verification effort of SNR would be greatly enhanced by either I) the

existence of a single source accurate specification for SNR, or 2) coupling verification

with a redesign effort so that problems discovered during verification could he address as

part of the design process

E. RELATED WORK

Previous work on SNR, fMcAr92] and [Tipi9J], provides comprehensive

specifications of SNR and alternative interpretations of some of its design objectives

Although these documents are not the primary reference for the thesis, they aided

significantly the translation ofSNR into Murphi's Descriptive Language. The etl'ort in

[McAr92], focused mainly on obtaining an accurate specification for SNR and on analysis

of its functional efficiency_ Further refinements to the specification and an attempt to

examine the behavior ofSNR more deeply was made in [Tipi93] and [LuTi94]

A software implementation of the SNR's transmitter portion and receiver portion

is presented in [Mez95] and [Wan95] respectively Test results of this implementation are

given in [Gri95]

F. ORGANIZATION

Concurrent systems and their basic properties are discussed in Chapter II First

concepts fundamental to concurrent systems are introduce and then examples are used to

illustrate a few of the central ideas.

In Chapter III, concurrent system verification methods are discussed Mechanical

verification and manual proof methods are demonstrated_ A brief introduction to the

concept of state space explosion and state space reduction techniques is also provided

Finally, verification concerns specific to protocols are addressed

Chapter IV covers the Murphi Verification System_ Its key features are explained

The SNR protocol is described in Chapter V_ An overview of the protocol is

given followed by a detailed treatment of its organization_ The operation ofSNR' s data

transfer phase is also explained

The verification of SNR's connection establishment phase and its data transfer

phase (operating in Mode 0 and Mode 1) is presented in Chapter VI and Chapter VII,

respectively_ Each chapter covers the key properties of the phase being examined and the

Murphi description used for its verification. Implementation problems encountered and

inconsistencies uncovered in SNR's specification are also discussed

Conclusions and recommendations are provided in Chapler VIII

II. CONCURRENCY CONCEPTS

A. FUNDAMENTALS

Many practical situations involve concurrent systems and related concepts For

example, the preparation of a meal often al lows performing tasks in parallel - two or

more dishes can be cooking at the same time. Typically, communication protocols

execute as a concurrent system. Another example, familiar to all computer users, is a

computer's operating system. While concurrent systems are frequently encountered,

formal !eons and analysis methods relevant to concurrency are often unfamiliar. This

chapter introduces basic concepts of concurrent systems. These concepts are then

revisited in the next chapter in the context of verification

1. General

In [Ben93], a concurrent program is defined as follows, "A concurrent program

consists of a set of program fragments caHed processes that can potentially be executed in

parallel. " This definition suggests characterizing a conCUffent sY!J"tem as consisting of

individual entities that operate in parallel These distinct modules could be programs,

machines, or any other types of agents that perfonn a process. A concurrent system may

use some method of synchronization or communication to coordinate the actions of the

separately running units Typically, global variables shared by the individual units are used

for the exchange of inlimnation. Message passing is another method employed to

facilitate cooperation among the separate entities. When explicit synchronization is not

part of the system and the separate processes can run at arbitrary speeds, the concurrent

system is referred to as an asynchronou.s concuffent system

It should be clear that a concurrent program is a type of concurrent system

Although only concurrent programs are used in the examples in this chapter, the ideas

discussed helow apply to all types of current systems, even a concllrrent system whose

implementation may include hardware in addition to software

2. States and Transitions

The set of allowable states (or reachable states) consist of those states which can

be reached via an execution path. The initial system state is refereed to as the start slale

There also may be states that can only be entered if an error occurs in the system. The

global system state (or glohal stare) is defined by the values of variables comprising the

concurrent system, both global variables and variables local to the separate units, System

variables may by explicit or concealed. A program counter, local to a process, is an

example of a hidden variable, The size of the global state~space is determined by the

domain of each variable. A global state can be represented by a n-tuple, with each

component representing one of the system variables. Ifa system consists ofn variables,

and each variable can take on a value from domain OJ, then Dl x O2 X .. . X On defines the

total size of the system state space. The number of states available to the system can be

very large. It is typical, in real world systems, for the number of reachable state to be so

large as to preclude exhaustive system analysis, When this situation occurs it is referred to

as "state space explosionft

When and how the values of system variables can change, characterize the

transitions allowed in a concurrent system, Each process ofa concurrent system can

perform atomic actiulls. These actions define the system transitions. Once started an

atomic action is executed indivisibly until complete. Individual instructions that may

comprise the action are assumed to execute instantly. The granularity of the atomic

actions depends on the level of abstraction used for a particular representation, The level

of abstraction, in tum, determines the kind of analysis that can be performed

An important aspect of any concurrent system is the illterieaving of its atomic

actions. Under many conditions the execution ordering, among the atomic actions of the

various modules comprising the concurrent system, is nondeterministic. This greatly

increases the complexity encountered when considering concurrent systems

The history of a concurrent program's transitions can either be described using a

sequence of states or working from the start state and applying the sequence of atomic

actions executed , Either history can be used 10 generate the other The sequence of

atomic actions can be reconstructed from a listing of states hy noting the change in the

program counter from one state to the next. From a sequence of transitions the sequence

of states is obtained by simulating the actions. Each history corresponds to one possible

interleaving for the system, The set of all histories characterizes completely the behavior

of the concurrent system_ Correct hehavior of the system depends on whether the set of

all possible interleavings exhibits certain properties

3. PropertiH

Various properties can be attrihuted to a concurrent system Properties commonly

belong in one of two categorizes, safety or !iveness, A liveness property asserts progress

will be made by a program A safety property says that, if a program makes progress it

does so without error, Some general properties are deadlock. faime.~s (.~/arvaiion), and

/ivefock For concurrent systems, deadlock has occurred when no other states can be

reached other than the current state, Livelock is similar to deadlock, but with some

number of transitions occurring (i.e., altering the global state) before the current state is

repeated and where no overall progress takes place. Fairness (or absence of starvation) is

the condition that if a module is ready to perform an action it will be given the opportunity

to carry out that action (no appropriate action is indefinitely delayed)

B. EXAMPLES

To illustrate concepts and properties discussed above, four programs that attempt

to implement the familiar notion of mutual exclusion, are analyzed. These examples are

based on material from [Ben90] and [BeR93}_ The programs introduced below will again

be used in Chapter IV to demonstrate some of the features and behavior ofMurphi

Program Descriplion

The programs used in the examples consist of two processes, each executing a

loop containing a sequence of instructions The two processes are referred to as P I and

P2. The statements are presented using an Ada-style syntax. Each process contains a

non-critical section, a critical section, some means to signal the other process when it is in

its critical section (global variables CI and C2), and a method to control critical section

entry. A process may stay in its non-critical section indefinitely. When ready, a process

requests entry to its critical section and waits until admitted, Once in its critical section

the process will eventually exit. The general pattern is shown below

subtype TEST_ V.<\.R_ TYPE is imeger range 0" 1 ~
CI , C2:TEST_VAR :=1~ --global

Process PI
loop

Process P2
loop

non _ critical_section~
entry request section~

critic;;] sectio--;;;
post_critical_section;

end loop;

L2,1 non_critical_section~

L2,2 entry request section~

L2.3 criti~ sectio--;;;
post_ critical_ section ~

end loop;

Important locations in each process are labeled For purposes ofthe thesis, these

labels function as program counters. The first label in P I is Ll.1 . It indicates P 1 will next

execute the statement(s) between Ll.1 and Ll.2. (In a single processor system, this will

be the neld: time it is PI's tum to run,) Similarly the first statement in P2 is L2.1, second

L2.2, etc

The system consists of four variables, two global variables - Cl and C2, and two

local variables -- the program labels for PI and P2. Specifying their values defines a

global state of the system. An example ofa global state: PI at Li. J (or in a short hand

notion, Ll.1), C I = I, P2 at Ll.1, and C2 00. 1. Written as a 4-tuple, (LLl, I, L2.I, I)

The domain ofC] and C2 is {O,l}. The domain oflocations, for PI is {l.I.i, Ll.2, LJ.3.

Ll.4}. likewise for P2. The size of the global space state is

IClI x IC~ xIPIJ..oco'iofJ.}j x Ip2_Locolioll~ = 2 x2x4x4 = 64

A process's action may cause the value ofa variable (or variables) to change. For

example, (LI ,1,1, L2,3, I) ---+ (1,1 .2, I , L2,3 , I) is a state transition where the program

counter for PI went from Ll. 1 to [. 1.], ~ote changing the program counter for a process

is considered an atomic action even when multiple processor instructions are involved

The entryJequest_section and post_critical_section are instantiated with specific

instructions for each example presented below in Sections 3, 4, 5, and 6, The sequence of

statements from one example to the next change only slightly but the mutual exclusion

algorithm's behavior is usually significantly altered.

2. Program Properties

The desired properties for the example programs attempting to provide mutual

exclusion are

Category Prooerty
Safety I Mutual Exclusion - the two processes can not be in their critical regions

at the same time
Liveness 2, Fairness - ifa process seeks to enter its critical region, eventually it will

be allowed, (Or stated differently -- all execution interleavings aUow a
process to eventually enter its critical section if the process seeks entry)
3, Absence of Deadlock -- no execution interleaving exists that results in
both processes attempting to enter their critical region, but neither can
succeed
4. Absence of Live lock -- no execution interleaving exists, which could
continue indefinitely, that does not allow either process to enter its critical
section

Table I, Desired Properties for Mutual Exclusion Algorithms

The first three programs used in the examples violate one or more of the above

properties, In contrast to the other examples, Peterson's Algorithm satisfactorily achieves

mutual exclusion and the safety property without violating the liveness properties

3. Eumple I - Mutual E][('lusioD Violation

The program listed below operates as follows , When P I desires to enter its critical

section, it tests C2 to determine ifit can safely enter, IfC2 = 0, PI waits in the inner loop

until P2 has departed its critical section and sets C2 10 I. When C2 = I, P I sets C 1 to 0

and enters its critical section After P 1 exits its critical section it sets C I to O. Process P2

is analogous to PI

subtype TEST_ V AR_ TYPE is integer range 0 .. 1;

CI, C2: TEST _ V AR := I; -- global, set to 0 inside critical section, set to 1 after exiting

task body PI is
begin

loop

Ll.l Non Critical Section 1;
Ll2 loop- exit wh~n C2 =0 -I; end loop;

CI := 0;
Critical_Section_ I ;

/,/.5 Cl:= I;

end loop;
end PI;

task body P2 is
begin

loop

Ll.l Non_Critical_Section_2;
loop exit when C 1 = I; end loop;

L23 C2:= 0;
Critical_Section_2;

L2.5 C2:== I;

end loop;
end P2;

This program violates mutual exclusion (MUEX). The following interleaving

results in PI and P2 in their critical sections simultaneous: Ll. l, 12.1, LJ.2, L2.2, Ll.3,

L2.3, Ll..f, L2.4. From the starting condition, (LLl, I, L2.1 , I), alternate execution of

statements in each process can set up an unsafe situation. The system can find itself with

P I waiting at LJ.3, after testing C2 and exiting the inner loop but prior to setting CI to 0,

when P2, with its program coumer atL2.2, gets its turn to run. P2 test CI, finds it

equals I, and exits its inner loop. P2's program counter changes to L2.3 At this point,

executing statements from each process alternately results in the violation Figure I

illustrates the transitions leading to the violation ofMUEX

Figure 1. State Transitions Leading to MUEX Violation, I

4. Example 2 - Deadlock

Unlike the first example this program satisfies mutual exclusion When P I seeks

critical section entry, it sets C I to 0 and then tests C2 to determine ifcan enter. IfC2 = 0,

P I waits in a loop unt il P2 has set C2 to 1. When C2 = I, P I enters its critical section

After P I leaves its critical section C 1 is set to O. Process P2 works the same as PI

'Stale lat><.ls hav~ the following f<>IIIllOt: PI ', program locauun, Cl's value, Pl', program localion , C2' s value. Ouly
th(}!IC states imm ediately availahle from the pt.""iou.< stale are shown. The pat/, leading to 1M viol ation ofMUEX i.
indicated by arrow.

sublyptl TEST _ V AR _TYPE is integer range 0 .. 1;
C I, C2 TEST _V AR := I; -- global, set to 0 when process wishes to enter critical
sectIon,

-- set to 1 after exiting

task body PI is
begin

loop

Ll.l Non_Critical_Section_l;
LU CI :=" 0;
Ll.3 loop exit when C2 '" 1; end loop;
1.J4 Critical_Section_.I;
LJ.5 C I := I ;

end loop;
end PI;

task body P2 is
begin

loop

[2.1 Non_Critical_Section_2;
[2.2 C2:= 0;
[2.3 loop exit when C1 = 1; end loop;
L2.4 Critical_Section 2;
/2 5 C2:= I;

end loop;
end P2;

Although the program accomplishes MUEX, it exhibits deadlock The following

interleaving results in a situation with PI and P2 unable to make further progress: L1. 1,

L2.1, U.2, L2.2. Ll.3, L2.3. At LI.2PI signals its intention to enter its critical section

and then stops at L1.3, while P2 executes. P2 does the same thinS. PI sets CI and P2

sets C2 just before the other process checks if entry is allowed. Both P I and P2 become

"stuck" in their inner loops unable to exit . The global state remains at (Ll .3,0, L2.3,0)

since the action of the inner loop does not change the value of any system variables

Deadlock occurs in this program when atomic actions from each process execute

alternately. Interleavings that do not alternately set C1 and C2 to 0 do not violation this

liveness property

5. Example 3 - Starvation and Linlock

The program listed below works as fo1Iows . When PI desires to enter its critical

section, it sets CI to ° and then tests C2 to determine if it can safely enter. !fC2 --" 0, P1

gives ups its attempt to enter its critical region by setting C1 to I . P I then resets CI to 0,

and tries once again to enter its critical region, When C2 = I, PI exits the inner loop and

enters ils critical section. After P I completes its critical section it sets (I to O. Process

P2 works just like PI. Because oflhe concurrent nature of this program, the two

statements inside the inner loop, where C I is assigned one value and then anolhl:r value,

are important to the behavior of the algorithm, Each assignment is atomic and the

resulting state transition may l'Ilable an action in the other parallel process

subtype TEST_ V AR_TYPE is integer range 0" 1;

(1, C2. TEST _V AR := I; -- g lobal, set to 0 when process wishes to enter critical
section,

-- set to I after exiting

task body P I is
begin

loop

Non_ Critical_Section_l;

LI.2 CI:= 0;
Ll.3 loop exit when C2 = I ;
LJ.4 (1 := I ;
Ll.5 Cl:= 0;

end loop;
Ll. (; Critical_Section _I ;
LJ 7 (1:= 1;

end loop;
end PI ;

task body P2 is
begin

loop

Non _ Critical_Section _2 ;

L2.2 C2 := 0;
Ll.3 loop exit Whl"IlCI = 1;
L2.4 C2 :;= I;
L2.5 C2 ::= 0,

cnd loop;
U,6 Critica1_Sectionj;

L2.7 C2:= I ;

end loop;
end P2;

Starvation and livelock are both possible in this prognun, Explained first is the

circumstances leading to starvation, then livclock is eovered

Starvation occurs under the following situation: PI al LI.2 and P2 at L2.2; P2

transitions 10 [2.3 and checks C I , Since C I = 0, P2 cannot exit the inner loop and enter

ils critical region so P2 transitions to L2 . .J setting C2 an to I (Note since arbitrary

interleaving is possible, P2 eould have stayed at U.3 and PI transition to LI.3); PI

transitions to LJ.3, checks C2 and advances 10 U. 6, entering its critical section; P I can

now exit its critical section, set C I to I, execute its non-critical section, set C I to 0 and

end up back at L I . 2. This particular sequence can continue without P2 gening an

opportunity to enter its critical section. Likewise, starvation of PI can occur.

The following interleaving illustrates a situation where P I and P2 continue to

execute a sequence indefmitely (livelock) '

LI.2, U.2, L1.3, L2.3. LJA, U.4, /./.5, L2.5,

L1.3, U .3, L/A, /.2.4, U .5. U .5,

L1.3, U.3, LJA, U.4. U.5, U.5

In this particular interleaving, neither PI nor P2 enters its critical section This occurs

because the setting and resetting of the global variables C 1 and C2 is not coordinated with

the test of the loop exit condition. Any deviation in the sequence will break the Jivelock

and allow progress

6. E:umple 4 - Peterson's Algorithm

Peterson's Algorithm, as implemented below, is similar to the program given in

Section n.B.4 (example 2 above), except the addition of the global variable LAST

prevents violation of desired program properties. LAST indicates which process, PI or

P2, most recently executed its critical section. If both processes request entry to their

critical section at the same time, LAST is used to break the tie. The process that has

waited the longest is allowed to enter. The global variables C I and C2 are used, as

before, to indicate a process' s desire to enter its critical section.

subtype TEST _ VAR_TYPE is integer range 0 .. 1;
subtype LAST _TYPE is integer range 1 . .2;
C I, C2: TEST _ V AR:= I ; -- global, set to 0 when process wishes to enter its critical

-- section, 1 after exiting
LAST: LAST_TYPE .. I; -- global, indicates most recent process to execute its critical

-- section, used to break ties

task body P I is
begin

loop

Non Critical Section I;
Ll.2 Cl:= 0; - -

Ll.3 LAST:= I;
L/. 4 loop

exit when C2 = 1 or LAST /= I ;
end loop;

Ll.5 Critical_Section_l ;
LI.6 C1 := I;

end loop;
end PI ;

task body P2 is
begin

loop

/,] I Non Critical Section 2;
LV C2:;;;'-0; - _.

L2.3 LAST _= 2;
U.4 loop

exit when Cl '" I or LAST /= 2;
end loop;

L2.6 Critical_Section_2;
L2.7 C2 := 1;

end loop;
end P2,

The safety property, mutual exclusion, and the liveness properties are satisfied by

Peterson' s Algorithm, To gain some insight into its behavior let's compare the programs

from example 2 and 3 with Peterson's Algorithm, In example 2, deadlock occurred when

atomic actions from each process were executed alternately Both PI and P2 became

"stuck" in their inner loops when each process signaled their intentions to enter its critical

section just before the other process checked if entry was allowed. With a similar

alternating execution interleaving, deadlock is avoided in Peterson's Algorithm because

both PI and P2 set the variable LAST. Suppose PI is at Ll.4 and P2 is at Ll.4 and P2

had just assigned LAST the value 2, Assume now PI starts to execute again, and the loop

condition at LI. 4 is checked, Since LAST = 2, P I can exit its inner loop and enter its

critical section Starvation and livduck as demonstrated in example 3 is avoided in

Peterson's Algorithm. The assignment made to LAST in each process prohibit that

process from starving the other process, Analogously, since an execution sequence can

not be immediately repeated, livelock is also prevented

C. COMMUNICATION PROTOCOLS

Cormnunication protocols are often implemented as communicating concurrent

programs. Thus, like all concurrent systems protocols can be ascribed properties. Correct

infonnation transfer is the desired primary property of any protocol. The iiveness

properties covered above also apply and safety properties specific to a particular protocol

can be formulated . Some examples include

• Safety -- The number of messages acknowledged by the receiver is the same as
the number sent by the transmitter

Safety -- If any data is delivered to the destination it is the same as the data
given to the protocol by the source

Liveness -- Ifthe transmitter's host has a message to send it is eventually
delivered to the receiver's host

Another interesting concept applicable to protocols (and other concurrent systems)

is self stabilization as discussed in [GoMu91] A concurrent system is usually designed so

that only safe states are reachable from the stan states of the system and program

execution from any safe state results in another safe state, Under normal execution,

transitions to unsafe states are not allowed. A system is self stabilizing if a system in an

unsafe state can reach a safe state after completing a finite number of actions. The system

could have ended up in an unsafe state as a result of any number of causes. A

communication protocol could find itself in an unsafe state by such actions as, improper

initialization, the corruption of a packet's sequence number, the transmitter or receiver

'crashes' and then recovered, etc

III. VERIFICATION OF CONCURRENT SYSTEMS

A. METHODS

Verification, in the framework of software engineering, entails checking if the

program meets its specification. Tn the oontext oflhis paper, verification involves

characterizing the concurrent system in some language, deductive system or modeling

scheme and then showing that the behavior of this description satisfies the correctness

criteria given in the specification. One method of specifYing the correctness criteria for a

system is to list required program properties. The task then is to show these properties

remain true in all reachable states. This chapter introduces fonnal methods for verifying

concurrent systems

Various approaches for modeling and verifying concurrent systems have been

employed Finite-state modeling methods, such as communicating finite state machines

(CFSMs), Petri nets, and Kripke structures have been used to represent concurrent

systems. The model chosen usually depends on the type of analysis being perfonned and

the behavior exhibited by the system. Concurrent system verification includes such

activities as

• proof construction using axioms and inference rules of a logic, or

• analyzing the set of possible system states

Each approach has particular advantages and disadvantages depending on the concurrent

system being examined

1. Formal Proofs iu Logical Systems

Fonnal proofs are the most familiar approach used for concurrent system

verification. Mathematical proof.<; are constructed, showing the truth of system properties

expressed as propositions_ Various types of logical systems have been used, including

temporal logic. A proof constructed manually may require considerablc ingenuity to

manageably organize the proof The process can be quite tedious, and, due to limitations

on human's abilities to deal with complex system, is prone to errors. Mechanical theorem

provers have not provided as much help as hoped in constructing mathematical proofs for

concurrent systems, The task of proving the correctness of programs described in even

some of the more simple deductive logical systems is inherently difficulty_ To illustrate the

manual proof procedure, a formal proof for the mutual exclusion algorithm of example 2

(from Section II.B.4) is given below

a. Formal Proof Example

This section illustrates the formal proof verification approach It uses the

mutual exclusion algorithm presented in Section a,BA. This algorithm satisfies the

mutual exclusion property but can deadlock. To prove mutual exclusion it must be shown

that this property is satisfied in all allowed states, A proof of mutual exclusion is given

below using propositional logic

The program is reproduced in this section for easy reference

subtype TEST _V AR _TYPE is integer range 0., I;
CI, C2: TEST_YAR := 1

task body PI is
begin

loop

Li.J Non_Critical_Section_l ;
Ll.2 CI:=- 0;
Li.3 loop exit when C2 = I; end loop;
Ll.4 Critical_Section_l;

CI := I ;

end loop;
end PI;

task body P2 is
begin

loop

L2, J Non _ Critical_ Section_ 2;
C2 :==0;

Ll,3 loop exit when Cl = I; end loop,
Critical_Section _ 2;
C2 := I;

end loop;
end P2;

The mutual exclusion property is false if P I is at Ll. 4 and P2 is at L2.4 al

the same time, Expressed as a logic formula,..., (at(Ll.4) v al(L2.4», This formula must

be shown to be invariant through all transitions. The proof is based on induction on the

execution sequence and was originally pre~ented in [Ben901 It is reproduced here using

notation consistent with that used in this thesis

First two lemmas are required for the proof

Lemma I . C['" ° == at(Ll.3) v at(Ll.4) v at(Ll.5) is invariant

This states, when P I is at LJ.3 or Ll.4 or U.S the variable Cl i~O and when Cl is 0, PI

is at LI.3 or Ll.4 ur /.1.5

frnclQ(l&!!!!D.ll

Basis Step: C1 is initialized to 1 and the first statement label in PI is LI. I Thus both

sides of the equivalence are false, so the formula of u:mma I is true prior to executing any

of the statements in the program

Inductive Step: Assume the formula is true before any statement is executed. We need to

show that the formula is true after each statement is executed. Nl possible transition of

P I and P2 \.vill be examined

1 LI.i toLl. 2 : The truth of the formula is not affected by this transition lfthe
formula was true before making the transition, it is true after the transit ion

2 LI.2 to LI.3: CI is assigned 0, making the left side of the formula true. The
proeess advances to Ll.3, making the right side true since PI is now at Li.3

Li.3 tu Ll.3: For this transition to take place, the test ofC2 = 1 must be false .
The loop is not exited. The truth of the formula is not affected by this
transi tion since no assignment to CI occurred and PI remained at Ll.3

4 Li.3 to Ll.4: The test ofC2 = 1 must be t rue for this transition, however
there is no affect on the formula

5 Ll.4 to Ll.5 Again no affect on the formula

6 Li.5 to Ll.i: CI is assigned 1 and the program location for PI changes to
Ll. i . The left side of the formula is now false . Also the right side becomes
false since P I is not at Li.3, Li.4 or Li.5 The equivalence remains true

7 Transitions in 1'2: The formula is not affected since assignmcnt to C I does nm
occur in P2, and the execution location in P I is not changed by P2

Hence the formula of Lemma 1 is invariant since it is initially true and remains true

through all transitions. :

umma 2. C2 = 0 "" III(L2.3) v at(L2A) v al(U.5) is invariant

fL~e.Il1l1ill....b

A symmetric proof of the invariance of the formula of Lemma 2 foltows from the proof

above lor Lemma I

Theorem 1 The formula..., (at(LlA) A at(U.4» is invariant

proof ofTheorem I

lnitiaUy P I and P2 are at L1. 1 and U .l , respectively. Each proposition is false, so the

conjunction is false, and the negation makes the formula true. Thus the formula is initially

The only transitions that can affect the truth of the formula are L2. 3 to U.4 in P2 while

at(Ll.4) or advancing from Ll.3 to LlA in PI while at(LlA). By Lemma I, al(l,IA)

implies C I = 0, so the transition L2.3 to 12.4 can not occur since C 1 """ 1 must be true for

P2 to exit the loop and make the transition. By Lennna 2 at(L2. 4) implies C2 = 0, so the

transition Ll.3 to UA is impossible for PI

The formula is not falsified by any ofthe program's possible transitions, thus the formula is

always true . :

(The proof can be simplified by using a proof hy contradiction as follows

Suppose (al(Ll.4) 1\ al(U.4» is true. Then C2 = I or C l = 1 which contradicts Lemmas

1 and 2. Therefore..., (at(L!.4) A al(U.4» must always be true.)

It is interesting to note that a different proof of this algorithm is given in

[Ben82]. Its approach is to show that the proposition, (PI in its critical sution), implies

the proposition, (P2 is nol in its critical sution). Similarly, multiple formulations of

correctness proofs for the alternating bit protocol can also be found in the research

literature on concurrent system verification They are usually constructed to demonstrate

some particular proof technique or system

2. Stale Enumeration and Analysis

Verification based on state enumeration usually proceeds by describing the

concurrent system in a particular modeL Transition relations and properties orthe

concurrent system are described at the level of detail appropriate for the desired analysis

The description can be in such ronns as finite·state machines. programming·language like

notion, a Petri net, or a finite Kripke structure, The system states are then generated

based on this description. Each generated state is examined to determine if it is consistent

with the specification, The specification includes properties required 10 be true in all

reachable states, !fan undesirable state can be reached then the concurrent system's

design has been shown to contain an error

rne main advantage of using state enumeration and analysis for verification is it

can he automated, Tne Murpni Verification System and the SMV model checker

[McMi92] are examples of automatic verification tools, Verifying a concurrent system

with Murpni involves describing its benavior in the descriptive language recognized by

Murpru, generating a C++ program from the Murphi description, and then running the

program to check the invariance of desired properties in aU reachable slates, See Chapter

IV for a detailed discussion or the Murphi Verification System. Section IV.D. presents

the Murphi descriptions for the same mutual exclusion algorithm used in the manual proof

example

The process of describing the actions and properties of a concurrent system for a

mecnanical verification system has its disadvantages. The difficulty is assuring the

description will generated alJ al lowable states. Will some interleaving be omitted because

of an error in the description? Also producing correct descriptions of desired properties

can be more problematic than it appears. It is not always easy to translate a simple

property expressed in natural language into the formal language used by the verifier

Another significant disadvantage is the problem of state· space explosion, An

exponential growth in the size of possible system states occurs as the complexity of the

system increases. Verification may not always be feasible, because of time and space

constraints, without employing space state reduction techniques The next section

discusses methods to lessen the state space explosion problem

B. STATE SPACE REDUCTION TECHNIQUES

The size ofa concurrent system's state space may grow very rapidly as the domain

or number of system variables increases Employing state-space reduction techniques,

such as eliminating redundant interleaving, folding related states, and down-scaling the

concurrent system under analysis, can help. The basic idea is to develop an approximation

ofthe concurrent system. The approximation is achieved by exploiting characteristics

such as symmetry or equivalence classes inherit in the structure of the concurrent system

The trick is to eliminate states without loss of analysis precision by ignoring some level of

detail (increasing the level of abstraction). Significant space state reduction has been

achieved by the application of these methods. A reduction of over 90% is reported in

[IpD93] when state reduction based on symmetry was applied to the verification ofa

cache coherence protocol. In [CGL92] verification ofa pipelined ALU circuit design

containing more than 10 1300 states was reported

1. Eliminating Redundant Interteavings

An example of state space reduction based on symmetry is available from the

mutual exclusion algorithms used in Chapter II. Each program contained two processes

PI and P2. These two processes are symmetric in their actions. Enumerating all possible

interleaving generates one state with PI in its critical section and P2 waiting to enter and

another state with P2 is in its critical section while PI waits. From an analysis perspective

these two states are equivalent in the sense that one process is in its critical section and the

other is waiting to enter. Which particular case is examined in the verification process is

not important, the same results are obtained from either choice This is an example of

eliminating redundant interleavings discussed in [ChHa94] and exploiting symmetry

covered in [IplJi93] .

2. Folding Related States

Abstraction is another method for reducing the state space by considering the

domains of the concurrent system's variables, It may be possible to partition a variable's

domain. Instead of using the full range ofa variable it may be only necessary to examine

situations where the variable is greater or less than some particular value. 'Folding related

states' is also referred to as abstract interpretation. see [ChHa92], [ChHa94], and

[CGL92]

A variation of the mUTual exclusion problem can be used to illustrate state folding

Consider a mutual exclusion implementation for N processes that uses a queue to store the

process id of all processes waiting to enter its critical section. Let a variable queue_count

represent the number of queued processes. To individual processes, the specific process

id ' s contained in the queue and their ordering is generally not significant. What is

important is whether the process requesting entry is allowed to enter its critical section

(i.e, queue_count is zero). The full domain of the variable queue_count does not need 10

be modeled. As an approximation, queue_count could be replaced by a boolean variable

that would indicate yes or no when a process requests entry into its critical section

This granularity of abstraction may not be suitable for all analyses. For example. if

a particular process execution sequence is required to ensure the correct operation of the

overall system (say process P3 must complete its critical section prior 10 PIO entering its

critical section) then an abstraction level that prevents checking the queue's ordering of

process ids is unacceptable. An essential detail of the system has been lost

3. Down·scaling

"One of the most important ways to make verification of large systems possible is

down·scaling·- pretending that they are smaU systems ," Dill argues [DDHY92]. The idea

of down-scaling is to conduct the verification using a subset of the concurrent system

When a system is scaleable, analysis precision is not lost. Results obtained from work

with a subset should reflect problems that exist in the full-scale system

The concept of down-scaling can be extended further When a system consists of

discrete phases, each phase can be analyzed separately. For this approach to succeed each

phase IIlllSt have a distinct stan and end. This idea was used successfully in the

verification of SNR conducted for this thesis

C. COMMUNICATION PROTOCOLS

The parallel actions occurring in protocols makes reasoning about their design

difficult. Adding to the inherit complexity of the interactions among the protocol' s

components are the affects of the transmission media. Data and control errors can be

introduced by the channel. Also, there can be a significant time delay from when

information is sent until it is received . Specific problems that can be introduced by a

network include

• Data packets delivered out of order

Variable round trip delay

• An intermittent or broken connection

• Data corruption

When a verification technique is applied to a protocol, both its concurrent nature and the

characteristics of the communication channel should be considered

The verification process can be simplified if the communication channel is assumed

to be perfect (i,e. reliable, packets are always delivered in order, constant delay time,

congestion free, data is never corrupted by the channel, etc.), This is a fairly reasonable

assumption in the context offiber optic networks. Invoking this restriction can facilitate

the initial verification ofa protocol design However, even under the most ideal

conditions network problems can occur. After an initial attempt, verification should be

applied to more complex characteristics of a specific target network. It should be kept in

mind that if all relevant details are included, complete verification of a protocol may not be

feasible .

IV. THE MIJRPH! VERIFICATION SYSTEM

A. OVERVIEW

The Murphi Verification System is a tool designed to facilitate the verification of

finite-state asynchronous concurrent systems. Murplti consist of a description language

and compiler. The Murphi Description Language furnishes a fairly rich set of features for

characterizing the behavior and properties of concurrent systems_ Two important

constructs of the descriptive language are rulr and invariant. Invariants are used to

express system properties. Rules portray a portion oftbe system's overall behavior

Carrying out the action of a rule usually changes one or more system variables, resulting in

a transition to another state. The Murphi compiler is used to create an executable

program that automatically tests invariants and error conditions while generating all

reachable system states

Four steps are required to use Murphi. First, the concurrent system's speciftcation

is translated into the descriptive language recognized by Murphi. Next, the Murphi

description is transfonned into C+-+ code using the Murphi compiler. The C++ code

produced contains code to generate all allowed state transitions, (i.e. , the behavior of the

concurrent system) and, code to check for error conditions and the violation of invariants

contained in the source description (i.e. , the properties of the concurrent system). The

e++ code is then complied with a standard e++ language compiler, creating an executable

program The executable program is referred to as the " special purpose verifier"

Running the program results in either a verification of the concurrent system or a

simulation of the system's execution

In the next sc(..1ion, a summary of the Murphi Description Language is h>iven The

following section describes the basic operation of the special purpose verifier. In the last

section Murphi is applied to the already familiar, mutual exclusion example from Section

II.BA. The Murphi description and the output produced for the example are explained in

detail. This demonstration of the tool in the context ofa familiar and relatively simple

program should provide the necessary background to understand the application of

Murphi to SNR Additional information about Murphi can be found in [DDHY92] and

tMeDi93f

B. MURPHl DESCRIPTION LANGUAGE CONSTRUCTS

The Murphi description of a typical concurrent system's specification has four

parts: a declaration part; a rules' section; a startstate portion; and a col1ection of invariants

For the most part, the syntax and semantics of the expressions, statements, and

declarations used in the description language are similar to those of general purpose

programming languages, such as Pascal, C, and Ada. Their employment is usually

straightforward, and no explanation is required. However, since rules, invariaats,

startstate, and rulesets are not found in general purpose languages, they will be explained

in detail

I. Dec:laration Part

The declaration part contains definitions for constants, data·types, variables,

procedures and functions used in a description. Constants and types are declared first

They are then used in the declarations of global and local variables. Types that can be

defined by tne user include: simple types •• enumerations and finite integer subranges; and

compound types •• arrays and records. Boolean is the only predefined type available

A potentially powerful feature found in Murphi is a data·type called Scalarset

When the concurrent system being investigated exhibit's synunetry with respect to one or

more variables, these variables can be declared type scalarset. The use of a scalarset

variable allows Murphi to automatically reduce the system's state.space

'11lcuserIIlllllWlJ nlld cxccutable soft"'are"", available ,-ia fip from Stanford University

2. Rules

Rules come after the declarations in a Murphi description They are used to

describe the conditions under which transitions are allowed to lake place and the action to

occur in each global stale. Rules have the form

Rule "name"
expreSSIOn

Begin
statemenl(s)

End;

The expression is a guard and must evaluate to a Boolean value. The kinds of

operators available are quite extensive and include such things as logical implication, and

universal and existential quantification. If the expression is true, then the rule's body is

executed The sequence of statements between the keywords begin and end comprise the

body of the rule. A rule's entire body is executed indivisibly. Example of statements

available in Murphi are: Switch statementsJor and while loop statements; procedure and

function calls; assertions; and output statements

Rules can be grouped in a set by the Ruleset construct. It has the form:

Ruleset identifier: range of identifier Do
set oj rules

Endruleset;

The variable identifier is local, and only effects those rules within the set oj rule As the

verifier executes, identifier takes on each value in its range. A ruleset essentially

duplicates the behavior of the individual rules contained in the set vj rules for each value

in range oj identifier

3. Startstate

Variable initialization is accomplished using a special rule called Startstate. All

variables must be given initial values by the startstate rule The startstate is only executed

once, at the beginning of the verification process

form

4. Invariant

Invariants are used to specify properties of the concurrent system They have the

Invll.riant "name"
express/OIl

The expression must evaluate to type Boolean. Its value will be checked in each state

generated during execution of the verifier

Similar to Invariant is a construct called LivenessJ With Liveness a property

can be written using a subset of Linear Time Temporal Logic (LTL). The temporal

operators, EVENTUALLY, AL WAYS, and UNTIL, are supported

C. SPECIAL PURPOSE VERIFIER

l. State <rtneration and Property Checking

The executable program generated from the Murphi description, called the special

purpose verifier, (or just verifier) can run in two modes -- verification or simulation. The

first rule executed in either mode is the Startstate rule The body of Startstate initializes

all system variable and defines the first global state available to the verifier. Based on the

values of the system variables, the verifier iderrtifies all rules with guards that evaluate to

true. The body of each enabled rule is executed. The state generated is checked for

various error conditions (i.e., run-time errors, deadlock, vlolation of user-defined asserts

staternerrts, error statements, and invariants). Ifno error is detected, then these newly

generated states are inserted into a queue. After all enabled rules have fired, a state is

extracted from the queue to become the new system state. Execution of the verifier then

continues from this state. The process ofdetennining all state transition rules satisfied,

generating the new states, checking for errors in those states, inserting the states into the

queue, and extracting a state from the queue, is repeated In the verification mode, the

'LivellCAAi.,upportedinMurphi V=iun271.

28

user can select either a depth-first or a breadth·first state generation path, During

execution, Murphi chooses among the enabled rules arbitrari ly to generate the next stale

If an eITor condition occurs, the verifier halts and reports the cause, otherwise its

termination depends on the run mode In the verification mode the verifier runs until all

states have been generated, In the simulation mode it continues to execute until

terminated by the user

2. Execution Report

When ran in the verification mode, the verifier displays, every 1000 events, the

number of states explored and the amount of time expendt:d. When execution is complete,

the errors encountered and the tota] size of the state space explored are reported. I,n the

simulation mode the verifier nonnally displays the total number of rules fired every 1000

event. Murphi has various options available for controlling its output. The level of detail

in the ext."Cution report can be increased, decreased or changed to meet the user's need

Examples of these options include: "make simulation or verification verbose"; "print out

rule infonnation" ; and "write a violation trace"

D. APPLICATION OF MURPHI TO MUTUAL EXCLUSION

l. The Murphi Descripiion

The verificat ion process begins by translating a concurrent program to a Murph.i

Description. For this example, the mutual exclusion algorithm discussed in Section II,B.4

has been translated into the descriptive language recognized by Murphi. The description is

presented on the next two pages. Note the correspondence between the concurrent

program (shown in the box) an its description

-- Murphi Ocscriptioo ofMUEX algorithm
- exhibitingdeadlOl;k

-Declarations

T)1"
test_var_type: 0. 1;
PI label t: Enum{LI I. -- non critical section

CU , :' assignCI ---:" O
LI_J, -]oopwhileotherproce5.~incritical

section
LI 4, -- critical section
LI) - assign C I := I J:

P21abel t:Enum{L2 I, -- noncritical section
C2_2. :.. assign CI---:" 0
L2_3, - loop while othcr prooess in crilical section
L2 4, - criticalscction
Ll- S - assignCl:= IJ;

Var -

Pl : PUabcU;
P2: P2 label t

g: ::=:=~~~
-Rules

Rule "PI non-critical section"
PI - LI I ~>

Begin -

PI :- LI 2;
End; -

Rule ' PI assign CI O'
PI " LI 2 - >

Begin -
CI :- 0;
PI := Ll 3;

End; -

Rule 'PI wait"
PI " Ll_J = >

Begin
if (C2 " 1) Thcn
PI := LI_4;

End; --If
End;

Portion of Program

subtype TEST _ VAR_ TYPE is inleger range
0 .. 1;
C1 , C2: TEST_ YAR;= I;

iask body PI is
begin

loop

L1.1 Non Critical Section I;
Ll.2 CI ~= 0; - -
L1. 3 loop exil when C2 '" I; end loop;
Ll.4 Critical_Section_ l ;
L1.5 CI := I ;

end loop;
end PI:

Rule "PI critical section "
PI ~ LI 4 '"""">

Begin -
PI := LI_S:

End;

Rule "PI assign C I '
PI = Li 5 =>

Begin -
C1 :'" 1;
PI := LI I;

End; -

Rule"P2 DOn-critical sectioo"
P2 = L21 - >

Begin -
P2:'" L2_2;

End:

Rulc"P2 3ssign CI 0"
Pl - L2_2 ==>

Begm
C2 ~ 0;

End,

RUlc"Plwait"
1'2 = 1.2_3 =>

Begin
rf(C I "" I) Then
Pl :or L2_4;

End: -If
End;

Rule" 1'2 critical SCC1ion "
P2=L1_4 =>

Begm
P2 = L2_5;

End

a. Declarations

Rule"Pl assign C2 I"
P2 ~ L2_5 = >

Dcgin
C2 :- 1;
Pl :- L2 L

End; -

- initialization
SUrtstate

PI :a Ll J;
C1:= 1; -

P2 :=L2_I;
C2 :"' 1;

End;

- safdyproperty
Invariant "Mulual Exclusion Violated"

I (PI =Ll3& P2 =] .2_4)

Three data-types are declared The statement 'test_ vaT_type: 0, I~ '

specifies an integer subrange with domain to, I). The next declaration is an enumeration

type, called 'Pl _labelJ with domain {Ll_I , Ll_2, Ll_3, LI_ 4, LI _5). 'P2JabeU' is

also an enumeration-type with domain {L2_1, L2_2. L2_3, Ll 4, LZ_5 L

Next to appear is the declaration of variables Four variables are declared

The first variable, 'PI " represents the "program counter" of process PI and can take on

values of type 'Pl_labeU' Similarly, the second variable repr~sents the "program

counter" of process Pl. Th~ two variables CI and C2 are of type ' test_var _type' and can

be assigned a value ofO or I . They serve a binary semaphores

b. RJlles

The first rule in the description, named "PI non-critical section", is enabled

ifits guard' PI = Ll _ l ' is true. The a,,1ion of its body is to assigns P I the valu~ L 1_2

Behavior of the other rules is similar to the first rule The table below explains the

purpose of each rule

Nrune
PI non·critical section
PI assign C °
PI wait

PI critical section
PI assign C I

P2 .

When at Ll . l advance PI 's program counter to U.2
When at U .2, assignCI the value 0, advance PI's program I
counter to L1.2
When at U .3, check the value ofC2, ifC2 I then advance
PI's program counter to U .4, ifC2 = ° then the program
counter remains at Ll.3
When at L /A advance P l'~am counter to L1.5
When at U.5, assignCI the value I, change PI '5 program
counter to Ll.l
Analogous to the first five, exce t for process P2

Table 2 Explanation of Rules for Mutual Exclusion Description.

The rules used in this example are very simple. Rules can be much more

involved For example, a rule 's guard can consist of a complicated expression. Also,

declarations of local variables, constants and types can be inserted between the rule's

condition and body.

c. Startstale

In this example four variables must be initialized The initial value of these

variables are as expected for the MUEX program. PI and P2 start at Ll.2 and L2. },

respectively Cl and C2 are both assigned a value of I

d. Invariants

This example has only one invariant . The invariant's name is 'Mutual

Exclusion Violated' . The expression is read as : .«(Pl = LI _ 4) 1\ (P2 = L2 _ 4». It is

false (ie., the invariant is violated) if a state is generated where both PI and P2 are in their

critical sections. After each new state is generated, the invariant is checked If false,

execution of the verifier terminates and a report is displayed.

2. Murpbi's Output

Below is the report generated by the ~pecial pur;>ose verifier produced from the

Murphi descri;>tion presented in ;>aragraph IV.D. I, Only the first few states and Ihe final

states of the report are shown. See Appendix A for a complete listing of this report

Verboscoptionselectt:d
The foJiowmg is the d<:uiled progress

Firi ng surtstate StartstalC 0
otnaincdstate
Pl:Ll_l

CI 1
021

Unpacking state from queue
PILI_I

CI 1
C2 1

The following nex! sUles are obtained

Firing rule P2 non-critical st:Ction
Obtaincdstate
PI:Ll_I
P2:L2 2
Cl 1-

Cl 1

Firing rule PI non-.critical section
Obtaincdsta\e
PI LI 2
P2 :L2=1
CI 1
CLI

Unpacking stale from queue
PLLl _I

CI 1
C2: I

The following next states arc obtained

Firing rule P2 as.~ign CI 0
Obtained state
P l:LI_1

CI 1
C2: 0

Firing rule PI non-.critical section
Obtained stale
P I:Ll_2
PZ:L2 2
CI 1-

C2: I

Unpacking SUte from queue
PiLl 2
P2:L2 -I
Cl 1-

C2 : I

The following next slales arc obtained

... skipping to the last few
transitions of the trace report .

Unpacking Slate from queue:
Pl:L1_3

Firing rule PI wait
Obtained stale
PI :Ll_J

CI :0
C2 : 0

The following next states are obtained:

Firing rule P2 wait
Obtained state '
PILl_J
P2 'L2 J
CI: 0-

C2 :0

Result
Deadlocked stale found

State Space Explored
17 states. 26 rules fired inO.40s

Rules Information
Fired I times • Rule"P2 assign C2 I"
Fired 2 times . Rule" critical section"
Fired J times _ Rule"n wait"
Fired 3 times . Rule"P2 assign Cl O'

P2:L2 3
CI: 0-

C2 : 0

Fired 4 times • Rule "2P non-critical section'
Fired 0 times _ Rule "P assign C I"
Fired I times _ Rule' critical section"
Fired 3 times - Rule 'PI wait"
Fired 4 times _ Rule "PI assign C1 0"
Fired 5 times - Rule 'PI non-critkal section'

The first state of the execution path -- (LI .I , 1, L2.I, 1) -- is that defined by the

startstate. In this state, two rules are enabled: 'PI non-critical section' and ' P2 non

critical section' . The body of each of these rules engender separate transitions and

produce distinct states as shown below

Name ofmle enabled PI non-critical section P2 non-critical section

~ (L1.2, I, L2.1, I) (Ll.l, I , L2.2, I)

Since no error or violation of the invariant occurred, both of these states are

placed on a queue. The state produced from rule 'P2 non-critical section' is extracted

first In this state, the guards of two rules, 'P2 assign CI 0' and ' PI non-critical section'.

are true. The states produced by these rules are checked for errors and placed in the

queue. The queue now contains three states {(Ll.2, I, L2.1, I), (Ll.I, I, L2.3, 0). (L1.2.

I, L2.2, I)}. (Note, even though the execution of a rule is repeated - 'PI non-critical

section'·- a different state is obtained since in this interleaving, rule 'P2 assign C1 0' has

already fired.) The verifier is using a breadth first search strateb'Y, so state (Ll .2, I, L2.1,

I) is chosen, and the verification continues. After ten more states are reached. the state

(LL3, 0, L2.3, 0) is the next state removed from the queue. Two rules arc enabled in this

state, 'P2 wait ' and 'PI wait' Execution of the body of either rule produces the state

(L1.3, 0, L2.3, 0). However this state is the same as the previous state -- deadlock Since

an error condition has been detected, the verification process stops and a report is

displayed. The report shows all states examined, rules fired. and the error detected The

sequence of states leading to the deadlocked condition can be dctennincd and analyzed

A report tracing the path to an error can be helpful for identifying flaws in the

design ofa concurrent system Basl-d on insight gained from an analysis of the verifier's

output. it may be possible to modify the concurrent system and prevent occurrence of the

execution interleaving that results in the undesirable state

v. THE SNR TRANSPORT PROTOCOL

A. INTRODUCTION

At the top level, the transport protocol SNR is a set of rules controlling the

exchange of data between a transmitter and receiver connected by a ne~·ork. The

transmitter and receiver run in parallel. They cooperate to transfer data from a sending

host (interfaced with the transmittt:r), and the receiving host (linked to the receiver), The

transmitter and receiver use packets to exchange data and control information

The data transfer process consists of four basic steps_ The transmitter is given data

by its host to send. The transmitter encapsulates the data into packets and inserts them

into the network for transmission. After the propagation delay intrinsic to the channel, the

data packets arrive at the receiver and are extracted from the network. The receiver

processes the packets and then delivers the data to its host This process would be

relatively straight forward if not for finite receiver resources and problems4 introduced by

the network . The constraints of the receiver are: 1) an upper bound on the rate at which

it can process data packets, and 2) a limit of the size of its buffer. (A buffer is required to

temporarily hold and reorder packets prior to delivety to the receiver's host)

The a(.1:ions of the transmitter and receiver must be coordinated to reliably transfer

data over a network Infonnation is passed between these two entities to achieve the

C<lordination required to carry out the five functions provided by SNR. These functions

• Connection Management •• establishing the conn~tion, detection of an
unintended connection termination, and connection tennination after completing
the data transfer

• Flow Control .- reslficting the number of packets in transit from the transmitter
to prevent buffer overflow in the receiver

4 Problero.thalcant..intHxlw;"dbyanemurkinclude.datacorruplioll. outofordt:r,lat1p"ck~(". Jo"tdatap"cket".
\"art"ble fOlUldtrip deJay, brol<cn conn<:ction, nc

• Error Control -- detecting and recovering from lost packets or corrupted data
SNR employs a modified selective repeat error recovery method

Ordered Delivery -- delivering data packets to the receiver's host in the
sequence sent by the transmitter

MultiplexinglDemuitiplexing -- establishing and communicating on more than
one connection at a time, (MultiplexinglDemultiplexing will not be covered in
this thesis.)

The description ofSNR's organization and operation will be introduced in steps

First a block diagram of SNR is presented. Second, a brief overview of the protocol's

operation is given, This is followed by a description and explanation of connection

parameters, packet formats, variables, and data structures used in SNR, Next, state

transition diagrams of the machines internal to the transmitter and receiver are presented

Finally, a detailed example ofa portion ofa typical data transfer session is given to

iUustrate the actions of these machines

The following concepts are useful to keep in mind when reading the following

sectIOns

The transmitter attempts to send as many data packets as possible without
overflowing the receiver's buffer, When the transmitter believes the receiver's
buffer is fun, the transmitter must halt transmission of data packets and wait
until a receiver control packet arrives acknowledging blocks previously sent.

The transmitter must retain a copy of data already sent (in case retransmission is
required) until that data has been acknowledged by the receiver

The state of the receiver, as known by the transmitter, is never current. Any
state information sent by the receiver takes a finite amount of time before it gets
to the transmitter

B. DESIGN FEATURES

Most transport protocols in use today fail to deliver the performance expected

with networks utilizing advanced components such as fiber optics. Existing protocols, for

the most part, were conceived and implemented prior to the development of technologies

used in modem networks, To overcome the deficiencies present in older, less reliable, and

slower networks, current protocols employ complex control procedures and thus suffer

from high processing overhead. The large processing demands placed on a system

running an inefficient protocol, reduces its ability to transfer data to and from the ner..vork

This creates a mismatch between the communication channel 's capacity for sustained high

transmission rates and the system's slower throughput. The transport protocol SNR has

been proposed to address this problem. It is specifically designed to take advantage of the

extended bandwidth, high speed switching, and lower error rate of modern networks

The design goal of SNR is to increase its overall performance while still coping

with problems that can be encountered even in modem ner..vorks, Two primary

innovations in SJ\'R 's design aim to achieve this goal . They are

• frequent and periodic exchange of complete state information between the
transmitter and receiver, and

• flow and error control based on packets grouped in blocks vice individual
packets

The concepts of periodic statf' f'IchB.oge and blocking are intended to simplify the

protocol's overall design, diminish its processing demands, and pennit an implementation

based on parallel processing . Parallel processing coupled with lower processing overhead

should significantly increase the throughput of the system running the protocol. The

expected result is a faster transport protocol even in the presence of transmission errors

l. Periodic Slate [schange

SNR exchanges complete state information of the transmitter and receiver

frequently and periodically apart from the occurrence of significant events, Most other

protocols pass the status of the transmitter or receiver only after detecting an error such as

a lost data packet. The error detection procedures typically involve explicit round-trip

delay timers, large data structures and complex packet acknowledgment schemes

Decoupling state exchange from specific events and frequently passing complete state

information, reduces the protocol's processing requirements for two reasons

First, the loss of a control packet (a packet containing state information not data)

has no significant impact in SNR. A new one, with the same or more current information,

will be along shortly. Other protocols must have some means, usually complicated, for

dealing with lost state packets since the information in each of these is accumulative. :Vith

most protocols the information in the most recent control packet augments a history of

state information In SNR, the information of individual control packets is complete and

can be processed independently of previously transmitted control packets

Second, frequent and periodic transmission of control packets can be used to

implement implicit timers. SNR uses simple counters to achieve the functionality of clock

based timers. The control packets are transmitted at a frequency linked to the reception

rate of data packets. Each time a control packet is received, a counter is incremented

Thus the interval between control packets and the rate at which a counter is altered

roughly corresponds to the current round trip delay of the network. With this approach,

SNR can automatically adjust to varying network conditions. SNR uses these "implicit

timers" for its retransmission and broken connection timers. The elimination of explicit,

clock-based, round-trip delay timers, and their associated problems~ potentially provides

the greatest gain from using periodic state exchange See [ZhaS6 J for a detailed

discussion of timer problems in network protocols

It may appear that passing state information in a fashion as in SNR might reduce

the throughput of the system. After all, this approach places extra packets into the

communication channel. However, it must be kept in mind that the transmission rate of

the channel is not limiting. Since a high speed network is normally running below

capacity, a protocol design that speeds up the transmitter and receiver, even though

additional packets are generated, should increase the achievable overall data transfer rate

'n.., problem ... -;thexplicit timer is: towhal valU(;should it re.C1'1 Too small, and = ssaryrelrllIDIIli,"ioos
OC<:Ul. Too large and the protocol responds 100 slo",I),10 a lostpac~et. Any stahctirMr setting 'Irnt~'Vi'iU be
unable 10 respond to changing netviork: conditi,,"s. PropolOCd ""hemes 10 d)nanllcalh' modify the yah", so far 11/"..,
fail cd loprovidco.nadequalesoluhon

2. Blocks or Packets

fo take advantage ofa fiber optic network' s low error rate, SNR implements a

block-based flow control and error control scheme. Rather then acknowledging and

retransmitting individual data packets, groups of packets are managed. This approach has

two effects on the data transfer process. First, the size of tables and the complexity oflhe

procedures used by the protocol to track the slatus of data packets are reduced. Second,

the number of packets sent during a session may increase because blocks (all packets in

the block not just the single lost or damaged packet) are retransmitted when data is lost or

corrupted . The first has a positive impact on the protocol's performance while the second

tends to reduce its throughput. Tn networks with low error rates, the retransmission of a

full block should nol occur very often and therefore unnecessary packets arc sent very

infrequently The processing speedup is expected 10 outweigh the higher packet count,

resulting in better overall efficiency compared to a non packet-blocking protocol

J. Operating Modes

SNR's design allows the level of service provided by the protocol to be controlled

Three operating modes are available in SNR. In Mode 0, SNR runs with flow and error

control omitted. In Mode I , flow control is provided but not error control. Both error

and flow control function in Mode 2

The reliability of the nrlwork and the type of data being transferred influences

mode selection. Mode 0 is used when a fast data t ransfer rate without concern for errors

is the principal objective .. Mode 1 is best suited for real time applications. The preferred

choice for transferring large files over a network likely to introduce errors is Mode 2

According to {NRS901 the efficiency of SNR is optimized when large packets are used in

Mode 2, and small sized packets ",ith Modes 0 and I

C. THE SNR ARCHITECTURE

The formal specification for SNR, provided in [NRS90], is based on a finite-state

machine model The protocol is specified by seven machines, three machines for the

transmitter (T! , T2, TJ) and four for the receiver (RI, R2, RJ, R4), The machines

internal to the transmitter and the receiver are intended 10 run in parallel without explicit

synchronization, The machines cooperate to pass data from the transmitter to the

receiver. Their actions are coordinated by means of shared variables and message passing

A block diagram of SNR is displayed in Figure 2 and a table summarizing the purpose of

each macrune is presented in Table 3, The arrows in the diagram represent infonnation

flow across the network accomplished by passing messages

D. OVERVIEW OF SNR'S OPERATION

Below is a sequence of actions perfonned during a data transfer session under

SNR, Most of the details have been omitted. See the last section oftrus chapter for an

example with actions at the state transition level of the internal machines

I The transmitter's host signals T2 that it has a message to send

2 T2 and R2 negotiate the parameters for the session and establish the
connection

3 Tl transmits blocks of new data packets until the preset limit on the capacity of
the receiver's buffer is reached or retransmission of a block is required.

4 R I processes the incoming data packets and updates the receiver's tables used
for tracking the reception status of packets and blocks, These two tables
indicate the need for data retransmission

5 At the appropriate interval, R3 sends receiver state infonnation to T2. This
information is used to update the status of the receiver's buffer (as known by
the transmitter) and acknowledge blocks of data

6 T3 periodically sends transmitter state infonnation to R2. There are a set
number of blocks transmitted between each control packet

7 R I reorders the data packets as appropriate

8 The processed packets are passed to the host by R4

9 Control packets continue to be exchanged and blocks of data packets sent until
the entire me~sagt: has been acknowledged by the receiver

; Network Receiver

Figure 2 Block Diagram of SNR

Machi ne Purpose

T1 Transmits/retransmits data packets

T2 Manages the connection and flow control for the transmitter

T3 Sends the t ransmitter ' s state infonnation to the receiver

R 1 Processes incoming data packets.

R2 Manages the connection and flow control for the receiver

R3 Sends the receiver' s state information to the transmitter

R4 Passes processed data packets to the host

Table 3. Purpose of Each Machine in SNR

10. T I will retransmit a block of data packets if the receiver fails to acknowledge a
packet from that panicular block prior to its retransmission counter expiring

II. TI temporally halts transmission of data packets if its information indicates the
receiver's buffer will be full when all of the data packets it has sent arrive at the
receiver, TI resumes sending data packets when state information from the
receiver indicates buffer space is once again available

12. T3 will terminate the connection if it has not received a receiver control packet
within the required time limit

~. COMMUNICATION PARAMETERS AND STRUCTURES

1. Connection Parameters

Parameters panicular to each cOIUlection are determined during the connection

establislunent phase, They include: number of bits per packet; number of packets per

block; buffer size; round trip delay (R TD); and bandwidth. Their values are then used for

calculating other connection parameters and initial values for protocol variables

Discussed below are important connection parameters calculated by ST\"R

a. L - Largest Allow~tl Number of Outstanding Blocks

The value of I, is chosen be slightly larger than

For example, assuming

(
R1V x banciwith]

bits per block

RID "'- 20 msec bandwidth = I Gbit/sec

1000 bits per data packet g packets per block,

lor the connection gives the result

[
(20xIO-Jsec)x(lxIO~hitspersec)]=25OOhlOCks

(1000 hits per packet) x (8 packets per block)

Rased on these values, L must be greater than 2500 blocks

T;" ~. Periodic Time Interval

Control packets are transmitter at interval

Tm = rna:! [RID ,lPT]
ko,

The constant kvll is typically a power of 2 such as 32, and lPT is the average time between

the transmission of two data packets, The value of T'n changes when the connection

becomes inactive If a data racket has not been sent within the period 'I',.., the value of l:~

is increased by a factor of 2. While the connection remains inactive, T;n continues to

increase by a factor 0[2, However, it never exceeds the maximum oflhe either R: or

IPT, where m is another constant such as 8, The value of T,. immediately changes back to

(Rm -J -max kou ,IPf when data packet transnussion resumes

For example, using RID '" 20 mscc, kou == 32 and lPT = 0,05 msec gives,

[20X lO-J sec 1 1 T,n=mAI --,-z-, Q,OSX10- sec =Q.625mscc

If the connection is inactive T," increase to 1.25 msec, then to 2.5 msec

2. Packets

The formats of the packets Ilsed by SN"R for transferring data and excbanging state

infolTIlation over the network are shown below. Following the packet fonnats are

descriptions oftbe fields comprising the packets (Table 4)

Data Packct I I.CI I T~pe~2 I Seq~ I

T ransmittcrControlPackcl I leI I T}1Ie=l I Seq# I" I uw, I No.ofblocls'l""ued I ErrOJChe.:;k

Receiver Control Packel I LeI I Type--O I Seq' I" I J.w, I lluff"l"_"v.ilable I LOll I Error Chec k I

FIELD NA.\,fE PURPOSE

LCI Logical Connection Identifier, indicates with which connection the packet
is associated, OnIv significant when multiple connections are estahlished
rile et's o,rence number

Data Contains the data being transferred. The nwnber of bits used for thls field
is ne otiated durin COnDe;:tion establishment
Rcceiver control et-O, Transmitter l'Ontrolket -1, Data ckct - 2
The inten'al between sending two ~uentiaJ state control packets in units
ofT,.

UW, Scqucn(.'(l number of the highest block transmittod but that may not have
(Upper Window been ackno\\'1edged. (UW, is analogous ,)

Transmitter
LW, Every block I' .. itha sequence number lcss than thls nwnbcr has been

(Lower Window acknowledged. (LW, is analogous,)
Rcceh'er

No. ofblock.~ ueued The number ofblock.s that have not vet been transmitted
Buffer avai lable The 5 remainin in the Teeeh-er's buffer (in blocks)

LOB Table of Outstanding Blocks - A bit map maintained by the receiver
indicatin the outstandin blocks in its "indow

Error Check Error detection code

Table 4. Fields ofSNR's Packets

3. Shared Variables

Presented below are the primary variables of the transmitter and receiver used in

the implementation discussed in [NRS90]. These variables are local to either the

transmitter Of receiver and used for coordinating the actions of their internal machines

I

VARIABLE

busy

clock_tick

LUP

PURPOSE

Sent by T2 and R2 to indicate the connection has been estahli~hcd

In the transmitter it indicates whether a data packet has been sent recently
In the recei,'er it indicates whether a datepaci..et has arrived recenLlv
Periodic event occurring at interval T ••

Counter employed to implement a timer used to detect a broken coonection or a
tailed tran~mitterorrcceiver
Counter used to implement a timer that marks the interval between sending
controlpacke1.5
The interval. in units of T;. between sending two sequential state control

I paclClI;
A table used m the transmitter to maintain the acknowledgment status of
traru;mitted bl~s. Jt has three fields for each element, [~#, oount, ad

bufJer _available The amount of space available in the receiver's buffer, as knOWll by the
transmitter. This variable is updated with the information in the
buffer available field contained in receiver controlPackct

NOll 'The number ofblQl;ks senl by the transmitter but not yet acknov.1edgcd by the
receiver . . 1;'O[Jmust 31wa 'S be less than L

AREq,j A table used by the receiver to maintain the Siatw;of recei"ed bloc.ks
AREC i is set 10 I when all packelS in blQl;i< 'i ' rccej\'cd errorfrce

RECElVE[I A table u.\Cd to maintain the status of recei\'ed packets RECElVEUI is set to

1 when packets " rccci\'cd error frce

Table S. Variables and Data Structures

Additional details of the variables required for the operation of the connection

establishment phase and flow control will be provided, as appropriate, in Chapter VI and

Chapter VII respectively

F. TilE SNR MACHINES

A state transition diagram of each machine used in Sl'.'R is given below along with

an explanation of its transition. These diagrams mimic the FSM's given in [NRS90 J

They are provided as a means of illustrating the concurrent action of the various entities

comprising SNR /lIId are not intended to serve as a specification

TRANSITIONS

1.2
1-->4

Figure 3 Machine Tl State Diagram

EXPLANATION

O;x;urs after start si received from 1'2

Occurs if Mode 2 (flow control and error control) is being used

~u:::~=j:: ~tO~eo;r:::u=t:~1~:~i~e~~ ;! ~':e ~~e~~~~s I
buffcr fora blockofdau Daekets
Occurs if the retransmission coonter for an outstanding block reaches zero
Occurs if there are no outstanding blocks to retransmit, and the receiver's buffer
has space for another block even after all blocks in transit have arrived
Occurs after an outstanding block has been rclrnnsmitted and the variablehllsy
has becn sct to true
Occurs after the transmitter Iuvi: sent a new block; updated the table of
outstanding blocks ([UP); and signals 1'3 that a block of data has been,;ent (busy
settolrue)

Table 6 Transitions tor Machine Tl

8"~'~"~
oom.«<LCI:.

I

in~,. l i",d l' ·" ·"~

~
l=b'~ro

o
Figure 4 Machine T2 State Diagram

TRANSITION EXPLANA nON

0--> I Occurs after a connection r uest is received . T2 from th~ transmitter ' s host

Occurs after scoum, VW, LW,. and L UP arc initialized
Occurs after the connection is established with the receiver

Occur!; after start si is sent 10 1'1 and 1'3
fu1ltS if a conlto\ eket is received from the receiver
Occu~ after Updating the receiver ' s stale information mamtained at the transmincr
and the disconnect counter scounl) has been reset

6-->4 OccursifModcOorModclarcbcinguscd
Occurs if\'lodc 2 is bcin uscd
Occurs after u . lin the block retransmission table LUP,

Table 7. Transitions fo r Machine T2

I

TRANSITION

Figure 5 Machine T3 State Diagram

EXPLANATION
Occurs after rcccivin stan ~I and variables k and count 3re initialized
Occurs if Mode 2 is being used and the periodic event, c1ock __ hck, is detected
Additionallv, the shared variable scauni is incremented
Ot;curs if the lransmitter has sent data since the last occurrence of clock_lick
AdI;liuonall ,the shared variable counl is incremented

2-44 Cb;un; ifthetransmiucr has not sent an ' data sincc the last clock lick

notbusv
5-46~)'

6-4DiSC

Occurs ir count ~ k, indicatin the transmitter's curren! state is required to be sent
Occurs if count <: k
Cb;un; aller the transmitter's state has been sent and count reset to zero

Occurs if the transmitter has not recentlY ~n! data (busy - false)_ Additionally, k is
increased to lengthen the interval ~tw~n control packet transmissions

Occurs if the transmitter has sent data recentl (bu~y- true)
CXcurs if scount <: Limil (the disconnect "timer" has not expired) and after busy set
to false
Occurs if scounl Limit (a receivcr control pilcket has not been received in the
expected interval aodscounl reached the ~ned value

Table 8, Transitions for Machine T3

J

rRAt'lSITIONS

Figure 6 Machine Rl State Diagram

EXPLAN A TlON

Occursafierstart signal receil'cd from R2
Occurs if a data 'ket is received from the transmitter
Occurs if operating in Mode 0_ The packet is deJivered to the host without any

l orocessin in Mode O.
Occurs ifModc 1 is bein used
Occurs if Mode 2 is bein used
Occurs after daLa is stored in the receiver" s buffer

J

4----> 16 ~;:;e:n~;~~'cr has processed the data packet and updating the two tables I

Table 9. Transitions for Machine Rl

'1be~fiCllti()!lfO£Rl in [NRS90] shnwslhisa.tnlllsitiou4 ... 2_ Howc~crtitismUSlbc1lIlerrorbecauseafter
retuminglO rule 2 fion\4.titelUllChi""'MlIlldbcstucl<ir1 state2sinceMode=2.nnl 1 orO

cp
1 ~bli~

Figure 7 Machine R2 State Diagram

EXPLANATION

Occurs after the connection has been established Y,ilh the transmitter

1 ~ 2 Occurs after start si sent to RI, RJ , and R4
2 ---} 3 Occurs if a control cket is receiyed from the transmitter

.1 -4 2 Occurs after the variable scount is reset to 7.ero

Table 10_ Transitions for Machine R2

TRANSITIONS

Figure 8 Machine R3 State Diagram

EXPLANATION

Occurs aftcr starl~signal received from R2 and variables imtiah1.oo (bu~y 10
false, k to I, andcoun!toO

I __ 2 Occurs if cven! clock Jick detected and after "coun! incremented
2 __ 3 Occurs if a Dew data ket ~ not been received and after count incremeDted
2 __ 4 Occurs if a new data packet received and after coun! incremented

Oc\;ursifitisnot 'ettimetosend acontrol ket(cou/l/<k)
3 __ .. Occurs if count k and aftcr k has been modified 10 reduce the traIl5mission

rate ofrecei\'cr control packets "
.. ---+ I Oo;urs after a control kct is sent, and after bu and coun! arc r~t

Occurs if the receiver has not received a control pad'ct frOlll thc transmitter in
the cxnoctcd inten,aJ scuuntrcachedprcdctermilloo,'aJuc

rable 11, Transitions for Machine RJ

7 TIl<: CfS\1 diagram in It.'RS901 inoonectly indiCl1«,d that k is mOOiticd during th~ t",nS;!''''' from Slak: 4 to 'Ulte 1
and that. control packd is scnt during the transition from state 3 to state 4

Omitted from [NRS90] are the details of mac rune R4 and the connection

establishment phase. It assumes the connection will be estabLished based on the three-way

handshake technique, The specification in [McAr92] includes the details of the connection

establishment pbase and R4, Additionally it adds another machine to the transmitter, T4,

to serve as an interface to the transmitter's host. The specification presented in [McAr92]

is refined in [Tipi93] and [LuTi94]

G. THE OPERATION OF SNR'S MACHINES

A fragment ofa data transfer session is used to illustrate interactions of SNR's

machines internal to the transmitter and the receiver. Only the most basic actions will be

shown, It is assumed that no errors are caused by the netWork during the exchange. For

this example assume the transmitter's host (called source) has a large file to send to the

receiver's host (called destination), and data transfer pbase Mode 2 will be used. The

value of variables will be given only when significant. The state of each machine will be

given after the occurrence of major events that modify its state. Additional details relating

to an event are provided following the table as appropriate (event numbers marked with an

asterisk), Two or more events written in the same table row, indicate that in this

particular example, the actions are concurrent

No Descri lion
I Transmitter and n:eeiver idle no connection

I 2 = :i~on:!~:etransmitter that it has a

Variables initialized

I" The paramelen of the cOI\llCction are determined
T2 and R1 establish the connection

I 6 ~rt_Signal received at Tl and T2 and at Rl and

7 Mod: 2 hein used for connection

I' Check of retraru;mission table indicates there are
n{) blocks to relran~mil and infonnation indicates

Ispaccavailable inthereceiver'sbuffer

State of State of Receiver's
Transmitter's Machines after event

MlIehines after event
T! T2 T3 R2 R~

-~

State of StatcofReccivcr's
EVENT Transmitter's Machines afi~r event

Machines afier evcnt
No Deseri lion I Tl 1"2 T3 RI R2 RJ

9 TI transmits 3 block of data packets, updates the
retransmission table, 3ndsctbusvtotruc

to M<XIe 2 beln 11...00 for oonnection
II Check: of retr3nsmission tablc indicatcs thcrc are

no blocks to retransmit and the information at the
transmittcr indicates there is space for anotber
block: in the recciver' sbuffer
Tl lr.rnsmils block of data packels, update thc
retransmission tablc, and sct busY 10 lIUe

13 Clock_tick dctcctcd at RJ (0.625 mscc since event
6

14 Clock lickdctected31 T3
15 busy is tmc in tbctrnnsmittcr,sostatcJ inT3 is

'-",,,
busy is false In the receiver. so ~'oum incremented

"'RJ
16 A control ckctissent T3
17 TI issc:ndin dataMlkisnolincrcascd""'T3
18 crnml - k and sincc no data has been received al

RI,kisincl"CllSCd
]9 Aconlmi etissenlbvRJ
20 1lledisconnccttimcrhasnotexpircd(scount<

Limit, so 1'3 sets bus\-' to false
21 T1 continues 10 send data packets, T, oontinues to 1,2,

scndoonlT0lpacketsC\-'cryO,625 mscc, RJ 4.1.
increased k (al C\'cnt 18), so receiver conlrol
packets are sent less frequently until a data packet
isrecei\-'td.

22 The first data packet arrives at the reccl\-'Cr
(approximately 10 mscc Slnct: event 9). busy is set

13 Modc2bcin used for connection
24 Thc data packet is proccsSl;d and RECEIVEf 11 set

~I

25 RI oontinue to receivc and process data packets

A lTan$mitter oontrol kCI arrives
R2 sets scoum to 0 and waits for Ihe arrival of
annthercontrol packet

29· At appro1cimately 20 mscc since evcnl 9, data
transmission stOp5 while Tl waits for an
aclrn0\1ilcdgmcnl from the receivcr

1,2,
4,5,
6,1 ,

4, 1,

1,2,
4,1

I

No Oeseri
30 Control packet from the receiver containing

acknowledgments is received at the transmitter.
31 Control ekel roc<:sscd '12
32 Mode 2 is bein used.
33 T2 updates LUP and waits for another receiver

conlrol packct.
34 S for il block exist in \he receivcr 's buffcr
35* Transmission of data ets resumed Tl.

State of
Transmitter's

Machines after evcnt
TI T2 T3

Table 12. Data Transfer Example

4'

Details of significant events marked with an asterisk

Connection Parameters for this example are

StatcofReceiver's I
Machinesaftcr cvcnt

RI R2 R3

RID = 20 msec bandwidth '" I Gbit/sec
packet 8 packets per block L> 2500 blocks

1000 bits per data
T." = 0.625

msec
12* Events 10, II, and 12 are a repeat of events 7, 8 and 9. These actions continue to

repeat until retransmission of a block is required, the transmitter has filled the
receiver's buffer and must wait until space is again available, or the entire message
has been sent

29* The transmitter has sent 2500 blocks and an acknowledgment has not been
received. buffer_available was set initially to 2500 block and nas not yet changed.
The number of outstanding blocks, NOU. now equals 2500
The condition (buffer_availahle - NOlf) > 0 is no longer true, so TI must wait in
state 2 until control packets from the receiver reflect available buffer space or
acknowledge some of the transmitted blocks

35* The protocol will continue to operate, executing actions similar to those described
in the table above, until the entire message is transferred
The operation of the protocol is significantly more complex then presented above

Only one of many possible execution interleavings is given and many of the finer details

are omitted. The example above demonstrates the difficulty of attempting to investigate

the correctness of SNR manually. The next two chapters cover the verification SNR's

connection establishment phase and data transfer phase, with the assistance ofMurphi.

VI. VERIFICATION -- CONNECTION ESTABLISHMENT PHASE
OFSNR

A. INTRODUCTION

This chapter describe~ the verification of SI\'R' s connection establishment phase

The Murphi Verification System is used to determine if properties attributed to the

connection establishment phase remain true in all reachable states. The reader may

wonder why formal verification of the connection establishment phase is addressed,

considering the designers of SNR omitted its details in a detailed description of the

protocol in [NRS901 Why not just assume the connection establishment phase functions

as required, skip its verification, and jump into the analysis of the more interesting data

transfer phase? There are four reasons for proceeding with its verification

I The function of the connection establishment phase is to prepare the
transmitter and receiver for a data transfer session It is during this phase that
connection parameters are negotiated and variables used by SNR are
initialized After it is complete, the protocol should be rcady to conunence the
data transfer phase. The corrcct operation of the connection establishment
phase is necessary for the protocol to function as intended_ Therefore
verification of this phase is a natural stan to verifying S?\"R.

2 The complexity of the phase is appropriate for the initial application of Murphi
to the Sl\'R protocol. Staning out with a simple phase of SNR provides an
opportunity to gain insight on the workings of the protocol and a ben,er
understanding of how best to employ Murphi for protocol verification The
work can serve as a " stepping stone" for applying Murphi to the more
complicated data transfer phase of SNR

3 A detailed analysis of this phase had already been attempted using the syslem
!!'"Iafe analysi~' method lLuTi94 J- The system state analysis approach
encountered difficulties and was unable to provide a complete analysis of SNR
Problems with the method arose because the role oflocal variables, such as
counters, were ignored. A modification to the techniques was employed in
[LuTi94] to overcome this problem and a fairly complete analysis resulted. It
is important to determine early whether Murphi will cncounter similar
difficulties

4 A comparison of the results obtained with Murphi and the system state analysis
method can serve as a "validation" ofthe mechanical verification approach

The remainder of this chapter covers five topics. First, a complete and detailed

specification of the connection establishment phase is given. Next, the operation of the

connection establishment phase is explained. This is followed by a discussion of the

significant properties to be verified. The Murphi description of SNR' s connection

establishment phase is then presented Finally, the verification results are discussed.

B. SPECIFICATION

The formal specification ofthe connection establishment phase is provided below

This specification is based on the systems of corrununicating machine (SCM) model

discussed in [McAr92] and the specification ofSNR given in [Tipi93] . The SCM model

uses a combination of finite state machines with their associated Predicate Action Tables

(PAT) to characterize the behavior of a concurrent system. The finite state machines

denote the states of individual machines comprising the system, and the allowable state

transitions. The PAT describes the enabling predicates and actions for every transition in

the system

Only three of SNR's machines are involved in connection establishment . Two

machines from the transmitter participate. Machine T4' interfaces with the transmitter ' s

host (Figure 9 and Table 16). T2 is the machine responsible for establishing the

cOlUlection over the network with the receiver (Figure 10 and Table 17). In the receiver,

only one machine, R2, is concerned with this phase (Figure 11 and Table 18). R2

cooperates with T2 to set up the connection

In this specification, two shared variables, T _CHAN and R _CHAN arc used to

represent the network connecting the transmitter and receiver. T _CHAN is used for

passing data and state information from the transmitter to the receiver. R _CHAN is used

to pass the receiver's state information to the transmitter. They are both based on a FlFO

' lllCspecificalioo giV<:llin IMcAr<J2Iaddedthisrnachin"

data structure, T __ CHAN(front) and R_CHAN(front) refer to the head elements of the

queues_ Additionally, a representation completely faithful to the characteristic ofa

network would prevent packet delivery prior to a specific time delay, Network

propagation delay is ignored in this implementation

Messages and variables used in this phase of the protocol are described in Table 13

and Table 14, respectively , Non-trivial processing required by an action or predicate,

associated with a transition, is perfonned using a pseudo procedure call. Procedures

required for the connection establishment phase are explained in Table 15 Procedure

names are in bold type in the PAT's

MESSAGES
Name Flow Purpose

(FrOID ~To)

Conn J eq T2 ~ R2 Connoction request, oomains the connection parameters desired by
the transmiuer

Conn _ ock R2 ---+ T2 Connection acknowledgment, oonlains the connection parameters
the receiver is ble ofsu rtin

Corm _con! Connection confirmation, indicates thaI the response send by
rece'VCflS ble lothe transmincr.

T ~ote T2 ---+ R2 Control packet conlains tr.msmitter ' s Slate inf"ormation

Data T2 ---+ R2 Data packet. contains data for the recci"cr's host

Table 13 Connection Establishment Messages

Name
Transmit

Fail

""""
R_active

clock_tick(T2)

CIOC~~ick

delay(T2)

delay(R2)

attempts

Accessed by
n. T4

n . T4

T2, 14

12, T4

T3

T2
R2

T2

R2

T2

VARIABLES
Type Pwpo",

Boolean Set to TRUE by T4 to indicate that a connection
sbould be established

Boolean Set to TRUE by T2 when the connection has been
~uccessful escablished\\itbthe receiver. Usedto
sig.nalthestartofthedacatransferphaseintbc
transmitter

8oo1~

8001=

Boolean

periodic

Set to TRUE by T2 when the attempt to establish a
conneo;tion failed because a responds to the COIIJeq
was neverrooei~'Cd.

Set to FALSE by 12 when parametersconcained in
Con_ockarc unsatisfactory for thedaca ttansfer
sessIon.
Set to TRUE by R2 when the connection lias been
successful established wilh the uansmitter. Used to
sig.nal thc: start of the daca uansfer phase in the
rCCCJVer.
Atiminge\'entoccurringatiDtervalsof r, •.

Used as an implicit timer for determining wben T2 lias
waited a sulJieient time period for a response to the
previous ConJeq message and that anot.herone
shouldbesellt.
Used as an implicit timer for determining when R2
ru.s waited 10ngenOligh for a response to the Con_ocll:
messal!e it sent.
Used as an implicit timer for determining when 12 has
sent ample Can Jeq messages and waited long enough
I'ithout a response from the receiver and the attempt
to est.:Jblish the connoction moukl be aborted.

Table 14 Connection Establishment Phase Variables

Name

Em~y

Enqueue

!ncrement

Transifion

fail

unaccept

Parameter s
message

channel idcntifle

channel identifier

JllC5sageand
channel identifier

message

COUl1tervariable

PROCEDURES
Function

Evaluatcs the connection par.lmctcn; in the Conn acl; message
Retums true if the oarameters are a(;reotabie. -
Remcves the daUi packet from the front ofthc indicated
channel

Returns true ift~channcl is e~·.

Inserts tbe message (pa.'iSCd in as a parameter) into the
indicated channcl for transmission

Processes the CO" _ req scm by the transmincr al1d determines
the connection parameters 10 be sent in the Can Gck mcssa e
Increments the indicated counter variable

Table 15 . Connection Establishment Phase Procedures

""",~Ol r, d

"=
'"rt

G)

Figur(9 Machine T 4 -- Host Interface

Predicate

Accept FALSE

Action
Transmit :- TRUE;

notify host of unacceprable
connection

mill

Table 16. Machine T4 Connection Establishment PAT

request

clock
ok

timeout

Figure 10 Machine T2 -- Transmitter Connection Management

Predicate

Transmit TRUE A AcccpI: TRUE
A Fai\ = FALSE

R CHAN(front) - CQnn ack A

Acceptable (R_CHAN(front»

n~(~"::~:.:t:;~~~~~)
Em R CHAN A clock tick

delav<r~t

dc!:l'o'-.reset

Action

T_active :-- TRUE;
ILnqumc{CQnn cQn[. T CHAN);

Dcqueue{R cHAN:>:
Accept :-FALSE

Dcqucue(R CHAN :
lDcrcmen dela :

mill
IDcrcment(attemplS); dcla' - 0;
En ut'lle Cunn re , T mAN):

Fail :-TRUE

Table 17, Machine T2 -- Connection Establishment PAT

Transition

timeout

"""

Figure II Machine R2 -- Receiver Connection Management

Predicate

Em t CHAN 1\ clock tick
delav< resct
dcj!!)'_ reset

T_CHAN(froDt) - Conn_c(mf y
T CHAN(from) ~ T stale v

- T _ CHAN(eroDI) ~ Dolo

T _ CHAN(froDt) - Conn Ji'q

Action
Evalua«:(CmmJeq):
Dequeue(T _CHAl\');

Enqneue(Conn ock R CHAN);
Incrementdclav):

ED ueu~(Conn ock, R CHAN;
.wl

R_ actiw :- TRUE;
if T CHAN{front) = Conn confthen
D;queue(T_CHA.~: -

end if;

Dequeue(f CHAl\');
En ueuc{ronn ;;ck R CHAN);

Table 18. Machine R2 Connection Estabhstunent PAT

C. OPERATION

When the transmitter 's host has data to send, the transmitter attempts to establish

a connection between e itself and the receiver using a standard three-way handshake This

process was outlined in steps two through five orTable lOin the previous chapter. A

more comprehensive description of the actions of each machine is presented in this

section. The operation of the connection establishment phase will first be explained when

no error occurs The names of variables are in bold type

In the absence of errors, the actions of connection establishment phase occur as

follows . T4 signals T2 that the transmitter's host has data to transfer to the receiver

(Transmit set to TRUE). T2 checks Transmit, finds it value is TRUE, and sends a

connection request message (Con J eq) to the receiver Information in Con Jeq specifies

parameters desired by the transmitter for the connection, After processing the Con J eq

message, R2 respond with a connection acknowledgment message (Con _ack) , Con_ack

contains the connection parameters the receiver is able to acconunodate, If the parameters

returned by the receiver in the COf/_Gck message are acceptable to the transmitter, T2

sends a connection confirmation message (Con_conf) and signals the transmitter's other

machines that the connection establishment phase was successful and to begin transferring

data (T_ active set to TRUE). Upon receiving the Con con/, R2 signals the receiver's

other machines to start the data transfer phase (R_active set to TRUE). The connection

establishment phase of the protocol is complete and the transmitter and receiver begin the

data transfer phase. If the transmitter finds the response of the receiver to its proposed

connection parameters unacceptable, T2 quits its attempt to establish a connection and

notifies T4 (Accept set to FALSE)

If the connection establishment phase was as uncomplicated as described above, its

verification would be relatively simple, However, other situations may occur that must be

taken into account. For example, ifT2 fails to receive a Con_ad within a set time delay it

sends another Con Jeq message. After a preset number of COII_ req messages have been

transmitted and nu response has been received, T2 terminates the connection

establislunent phase and notifies T4 (Fail set to TRUE). Likewise, ifR2 does not receive

a response to its Con _ ack witttin a set time delay the linkup routine in the receiver is

terminated

The coupling of concurrent actions and the possibility of problems due to failed

machines or errors introduced by the network makes this apparently simple phase of the

protocol more complex than expected

D. PROPERTIES

The desired outcome ortbe connection establishment pbase can be characterized

intuitively as follows

If the transmitter ' s host has data to send onc of two outcomes is acceptable

I A connection is correctly established so that the data transfer can take
place

2 Ifthc connection carmot be established as required then the attempt is
tenninated and the transmitter's host is informed of the failurc. Both thc
receiver and the transmitter should return to a ready condition

If data transfer has not been requested then a connection establishment is not
attempted

Specifically, the connection establishment phase must possess the safety and

liveness properties listed in the table below. Addit ionally, the desired outcome is not

guaranteed if deadlock is possible during this phase

Ty", Label
Safety 51

Safety S2

Safely

Livenes.-;

Li,'cncss

PROPERTIES
Behavior Characterized

IfT2 signals Illat the connection bas been succcssfuUy established (T _acth"e ·
TRUE). then all variables relating 10 the connectIOn establishment phase are
consistent \\itb this condition (Accept - TRUE and Fail "" TRUE). It would be
inappropriate for T4 10 notify the host ofa failure to COIUlect while TI is
atte~ptin tottansmildata
When the connection establishment phase is completed successfully, both the
transmitter and receiver arc ready to commence the data transfer phase
(T active = TRUE and R active-TRUE)
If an attempt to establish the connection is lUlJ)u=sful, then either the respoTISC
oflhe recei,'cr was unacccpWble (Accep t = FALSE) or T2 failed to obtain a
response from the receiver in the preset time limit (Fai l = TRUE .

If T4 receives a transmiS!Sion request from the transmitter's host then eventually
cilhcr the connection isestablishcd (T_actin = TRUE) or me attempt to
establish the connection is unsuccessful and either Accept .. FALSE or Fail ..
TRUE (sec 53 above). In other words, the actions taken in the traru;mitter must

roduce an exocctcdresult

If eventually the transmitter is ready for the data transfer phase (T_llttin true)
then the rocei"cr will become ready to accept data (R_lcti\'e = true) or the
allempt to eslabl.ish the connection is unsuccessful (again S3 above) or R2 ~
out aDd temlinates its conneaion establishment effon. L2 differs from LI in that
it is based on the receiver - actions taken in the receiver produce an expected
result but only under the condition that the transmitter behaves properly

Table 19. Connection Establishment Phase Properties

Now that the properties have been detenninoo the verification process can begin

Recall the task of verification is to show that these properties remain true in all reachable

states of the connection establishment phase Murphi is used to check for deadlock and

the invariants of the above properties

E. MURPHI DESCRIPTION

The first step for using Murphi to verifY the connection establishment phase is to

translate its SCM specification into a Murphi description. The SCM guarded transitions

convert easily into Murphi's rules Correctly expressing the properties is the more difficult

task. The Murphi description of the connection establishment phase is displayed on the

ne",t three pages. Significant elements of each section of the description are discussed

following the Murphi description

c,~

Type

rcset_T2: 2:
rescl_R2: 2;
max_attempts: 2;

State_labels : 0,,7:

/'" Declarations .,

- number of clock_licks lx:t een Con_req retransmi5~ions
-- number of clock_ticks before quitting
-- number of times Con_req retransmitted lx:fore quitting

Mcssagc_type . Enum {None, ConnJ Cq, Conn_ack, Conn_conf, T_stale. DalaL
Counler _Iype : 0,,2; - used for variables that incremenl or deuement

T2 stale : State labels;
n-statl: : Slate-labels;
R2 -state : State- labels;
Tj:aA.N : MesSagc_Iype;
R CHAN: Mcssagc_type:
Hosl_ T : Boolean: - true if transmitter host has data to send
Transmit: Boolean
T_aetive: Boolean;
R active: Boolean:
~:Boolean;
Fail: Boolean;
delaLT : Coumer_type.
delay_R: Counter_type:
attempts : Counter_type~
Rl_timcout : boolean; -- true iflransition timoout taken by R2

/'" Rules Section .,

Rule "signal" Rule "unacccpt_T4"

End~

T4_state =0 & HO~1_T

T4_statc:= I;
Transmit :=truc:

Rule "fail "

End,

T4_state - I & Fail - true

T4_state :=0;
Transmit :=falsc;
Hosl_T :=false;

T4_state - I & AccepI. = false

T4 ~tatc :'" 0:
H~t_T := false ;

End:

Rule "start_T4"
T4_~tate " 1 & T_attivc - true

T4_state:=2;
End:

1*T2transitions *1

Rulc"request"

End;

T2 state " 0 & Transmit = true &
!\cc-;;pt ", true&Fail " false

T2_statc := I ;
T_CRA .. "!:"" Conn_!eq~

Rulesct P _acceptable : BooleilnDo
Rule "accept"

T2 state = 1 & R CHAN = Conn ack
& P_3CCcptable - true - -

T2_state :- 2:
T_active := true;

;=~~ ~:~~:~COnf;
End;

Rule "unaccept T2"
Tl SbtC = 1 & R CHAN Conn_ad

& P_~ble" falsc -

End;

T2 state : ~ O;

AcCept :=falsc:
R_CHAN ;- None;

Endrukset;

Rule "dock_Tl"
T2_state "t I & R_CHAt"l' = None

Tl_stale :=6;
delaLT := dclay_T + I ;

End:

Rule "ok_Tl"
T2_stale - 6 & delaLT < rescl_T2

End:

Rule 'timeout_T2"

End;

T2_statc - 6 &delaL T - rescl_T2

T2_state :'"' 7;
attempts := attempts + !
delaLT :- O;

Rulc"retry '
T2_statc - 7 & attempts <

max_attempts

End;

T2_statc := L
T_CHAN :- Conn_req

Rule "quit"
T2_stak = 7 & attempts

max_attempts

End;

T2_state :- O,
Fail :"" true;

/* Rl transitions *1

Rule "ad:"
Rl_state = 0 & T_CHAN '" Conn_Teq

Rl st.1.tc:= I;
T CHAN :- None;

R CHAN := Conn aek;
End: - -

Rulc'dock: 1U"
Rl=statc ... I & T_CHAN = None

Rl_state:= 3;
delaLR :- delay_R + I :

End;

Rule ' ok Rl"
Rl_state - 3 & delay_R < resct_Rl

R2 state:= I;
R_CHAN :=Cnnn_ack;

End;

Rule "timeuut Rl"
R2_statC= 3 & delaLR=resct_Rl

Rl stale :=0;
dclayji.. :=o;
R2 timeout :=lrue;

End~ -

Rille "start Rl"
R2 state - I &

End;

(T..=-CHAN " Conn_conf I T _CHAN =
T_statc I T_CHAN = Data)

Rule "lost ack"

Rl_staIC :- 2;
R 3clive:= lrue;
1fT CHAN " Conn conf then

- T_OIAN:: None.
cndif;

End;

Rl_statc = I & T_CHAN = Conn_teq

R2 Slate := I;
T CHA.."I :"' !'>looc;
R=CHAN : ~ Conll_ad::

/" Initialu.ation section"/

Stanstate

End:

Host_T ;" true;
T2 Slate =0;
T4-sta\C :"0;

~~;~~7=Okonc:
R - CHA'I :'" Nonc;
T;ansmit := false ;
T_activc: -= faJ sc;
R aclivc: - false;
AUepi :=truc;
Fail : .. ralsc;
dclaL T:= O;
dclaLR:=O;
attemplS:&O;
Rl_limeout :=false:

/" Properties "/

In\llUiant '-consistent conditions atoo~tion establishment-'
T_actlvc = tnte --t (AccepI = true & Fail ~ false):

Invariant"--transmitterandreceiverrcadyatcndofphase_'
R_Kt.ive = uuc --t T_actr.'C ~ true;

Invarian t "--notbothfail aodlllll1ccept-_'
f(Fail = true & AcccpC. " falsc);

Livenc~"-oonnl:<-llooestahlishedlfdcs;"ed __ "
Alw3ysTratlSmit = true --t EvcnruaUy((T activc" lrul:) I
{Fail - truc I Aocept = false»; -

Livcncss "--xmillt:r ready followed by rc\T rcady-"
Eventually Always (f_actlve = true & R_active = true) I Fail ., true I
Ac<;ept = fal se I Rl_limeout = true;

t. Declarations

First three constants are declared The value of"reset_T2" limits the number of

times the "clock -')0 ok" loop (state I to state 6 back 10 state 1, etc.) is executed by T2

prior to retransmitting a COI1Jcq message. Since clock_lick occurs at an interval of T,",

this loop serves as a retransmission timer T2. The constant "max_ attempts" fixes the

number retransmissions ofCol1J cq conducted prior to giving up the attempt to establish

the connection. A similar limit on the number oftimes Con _ ack is retransmitted is found

in R_2 with the constant "reset_R2"

Next, three data-types are defined. The type "State_labels" specifies an integer

subrange which ranges over the reachable states of12, T4, and R2. The next type

declaration is an enumeration type, called "Message_type" Its domain includes all

messages that could be sent during the connection establishment phase. "None" indicates

that the channel is empty

The variable required for the connection establishment phase comprise the fmal

part of the declaration section. They have already been explained in Table 13. In this

description, T_CHAN and R_CHAN are implemented as scalars. A queue is unnecessary

since the ordering of message in the channel has no impact on the operation of the

connection establishment phase. Also, any time delay corresponding to the network's

propagation delay is ignored

The introduction of a variable to implement a periodic clock event is not required

The presence or absence of a variable that alternates between two values has no impact on

the verification of the connection establishment phase.

2. Rules

The rules are grouped by the machine to which they apply. Note the

correspondence between each rule and the associated predicate and action of the guarded

transitions listed in the PAT's. The guard for all rules involve the current state of the

associated machine and the value of one or more variables. For most rules, the actions

and the conditions under which the their bodies are executed is clear and no explanation is

required

Slightly more complicated is the ruleset that is part ofT2 ' s description. The two

rules "accept" and "unaccep,-T2" comprise the body of the ruleset. The ruleset, causes

the value of quantifier "p _acceptable" to alternate between TRLTE and FALSE. This

allows the behavior of the connection establishment phase to be examined when the

receiver responds with connection parameters acceptable to the transmitter and also when

unacceptable parameters are sent

3, Slartstate

Variable initialization is as expected The machines all start from state zero The

channels are empty. The values of Boolean variables reflect an idle transmitter and

receiver. All counters used for the implicit timer are set to zero

4. Invariants

The invariants and liveness constructs correspond to the properties defined in

Table 18. The second invariant's fonnula. R_aclive = TRUE --+- T_active = TR{}E,

states " if the receiver is ready for the data transfer phase then the transminer is also. This

differs slightly from what is wrinen in Table 18 (I'_active = TRlJE and R_Kclive =

TRUE). The modification is necessary to prevent a false invariant violation. During

execution, T _active is set to TRUE prior to R _active being set to TRUE. (R _aclive is

not set to TRUE until after the message sent by the transmitter in respond to a Con_ad,

is received by R2). Since 'they are not both set to TRUE simultaneously, the fonnula

T_activc = TRUE & R_active = TRUE is not invariant

The first liveness formula, as implemented in Murphi is equivalent to

ALWAYS (p ~ EVENT1JALLY q)

The second Jiveness fonnula, of the fonn EVENI1JALLY ALWAYS (0), means at some point

p is true and remains true from then on

F. RESULTS

Analysis of results obtained from MUl1'hi indicates the connection establishment

phase of SNR functions properly. However, two interesting circumstances were

observed

The first is a condition flagged by Murphi as a deadlocked state. Tfncar the end of

the connection establishment phase, R2 limes out before it receives a COr/Jon! message, a

data packet, or a state packet from the transmitter, and after T2 has set T _active to

TRUE, the protocol ends up in a condition with the transmitter ready to send data but the

receiver has quit the connection. 10 This appears to he a liveness violation, however, when

the connection establishment phase and the data transfer phase are taken together,

deadlock is avoided The protocol eventually returns to the initial state since the

transmitter will timeout and disconnect when receiver state packets are not received

(occurs in the data transfer phase) The sequence of events pertaining to this situation is

given in the table below

Event Description

ACon ackmessa cissent R2
R2 increments dela
ddav is less than reset so another Con (lck III 0: is sent . R2
Con _ ock roc;;:ived at T2 and the connection panunc:ters it contains are acceptable
to the transmittcT, T active is sct to TRUE. ACon COli messa eisscntb\'TI

dela 'is less than reset so another Con ack messa e is so;nt bv R2
R2 continues to execute the "dock" "ok" transition. delay is incremented each
cycle

The value of T_actil'e ehecked b).' 14 and found to b).' TRUE. The ttansmitter
he ins tho: data ttansfer phase and sendl data nackets to the receiver.
dehn' reset so the "timeout" ttansition is taken bo.' R2
After a period of time the transmitter will terminate the COIlnection since T3 will
no.vcr receive a conlrol de. from the receiver

Table 20. Events Leading to Unexpected ConditIOn

State ofMacrunes
T4 T2 R2
1

1,3.1 ,

Also of interest is the need for a conjunction of three variables in the guard of

transition "request" of machine T2 to prevent livclock. If Transmit "" TRUE was the only

component of the predicate for " request", then once the host signaled it had data to

transfer, the rule would be enabled until Transmit was reset by T4. However, ifT4 was

never again given an opportunity to execute its actions (T2 and T 4 running on a single

CPU and starvation ofT4 occurs) then the "request" rule could fire infmitely often

Including Accept = TRUE and Fail = FALSE with Transmit = TRUE eliminates the

possibility of live lock

7)

VII. VERIFICATION - FLOW CONTROL MODE OF SNR

A. INTRODIJCTlON

The correctness ofSNR's connection establishment phase was examined in the

previous chapter, The next step is veritying the PJOtocol's data transfer phase. Instead of

attempting to investigate the data transfer phase in its entirety, a modular approach is

employed. Recall, in SNR the data exchange can occur without flow or error control

(Mode 0), with only flow control (Mode 1). or with both error and flow control (Mode 2)

Even though Mode 0 is the least complicated of the three modes, and therefore its

verification is the next logical step, its explicit verification is skipped. Mode I essentially

includes all of the states and actions of Mode 0, (The only difference is in machine Rl, In

Mode 1, Rl changes from state 2 to state 3 and then back to state I, while in Mode 0 R I

changes directly back to state 1 from state 2.) This chapter describes the verification of

SNR's data transfer phase operating with flow control only. The verification is

accomplished with the assistance of the Murphi Verification System. AdditionaUy, state

space explosion, as it applies 10 the Murphi description ofSNR '5 Mode I, is explored, It

is imponant to detennine whether state space explosion will prevent the full verification of

SNR

This chapter follows a fonnat similar to the previous chapter. The architecture of

SNR applicable to flow control is addressed first, followed by a description of actions in

Mode 1, Next the safety property applicable to flow control is explored and then the

Murphi description is presented Finally verificat ion results and stale space explosion are

discussed

B. MACHINE DIAGRAMS - MODE 1

No new material is present in this section. Chapter v, serves as the framework for

this chapter. 11 The packet types, variables, connection parameters, etc, applicable 10

Mode 1 are the same as in Mode 2 and have already been discussed in Chapler V. Only

TI, T2, Rl and R3 perform functions in Mode I. Presented below are extracts from the

diagrams and tables of Section Y.D.6 for these four machines Just those states and

transitions involved in flow control are shown.

"",,,,,,,,,D ~"d~w
available block

4

Figure 12 Machine T I State Diagram

EXPLANATION
Occurs when information 31 the transmitter indicates there is sufficient space in the

I fcceiver 's bufTer for a block of data kels(hu er available > O
Qxurs after the transmitter has: sent a new block; updated the table of OUl.$Unding
blocks LU ; and !leI buw \0 true.

Table 21 Transitions for Machine Tl

•• A principal goal oflhi. thesi. lS veril)ing the SNR pro!ocoJ lISintmduced in [NRS'iOj. Therefore the specification
gm:n in [McJ\r92] and as refined in [Tipi93j 00es Dol pluya primary role in the verification of the data trans f..,-phase

a4
"",,,,,,,,,,,,
received

Model 5

rC\'rstate
updated

6

Figure 13 Machine T2 State Diagram

EXPLANATION
Occurs if a control Ckcl is r<.'<Xived from the rc.x:iver

Ou:urs after updating the receiver's state inform31ioll maintained 31 the transmitter
and the disconnect counter (.,'count) has been reset

Occurs if Mode I arc bcin usod

Table 22. Transitions for Machine T2

@ "'" received

data stored in 2
buffer

MoOO'

3

figure 14 Machine R 1 State Diagram

TRANSITIONS EXPLANATION
Occurs if a data ck.ct is received from the transmitter

Occurs if Mode 1 is bcin used
Occurs after data is stored in the ro;eiver 's bufier

Table 23. Transitions for Machine Rl

I

Figure IS Machine R3 State Diagram

TRANSITIONS EXPLANATION
t ---+ 2 Occurs if C\'cnt cluck nck detected and after scount incremented
2 ---+ 3 Occurs if a new data ket has DOt been received and after count incremented

Occurs if a Dew data kct received and after count incremented
3 ---+ 1 Occurs if it is not et time to send a control Icel (count < k)

4 ---+Disc

o.:cw-s if count ~ k and after k has bcc::n modified to reduce the transmission
ratc of recciver control packet.s

Occurs after a control Icet is sent, and after bu. and. count, are reset

Occurs if\h¢ f(x;ci"cr has oot recei,,'ed a control packet from the transmitter in
thc expected interval scount reached nredetermim:d value)

Table 24. Transitions for Machine R3

C. OPERATION

The purpose of flow control in SNR is to permit the transmitter to send as many

data packets as possible without overflowing the receiver's buffer This is accomplished

by regulaling the transmission of data packets using information about the receiver as

know at the transmitter In SNR flow control is based on blocks of data packets not

individual packets

After the connection establishment phase is complete the protocol enters the data

transfer phase. Below are the basic operations performed during a data transfer session

utilizing Mode 1

• Tl transmits blocks of data packets until the preset limit on the capacity orthe
receiver's buffer is reached

• R 1 stores the incoming data packets in its buffer. Packets are removed from
the huffer hy the receiver's host. The status of buffer space (value of variable
buffer _available) is updated as new packets are inserted and the host removes
packets

At the appropriate interval, R3 sends receiver state information to T2, This
inlonnation is used to update the state of the receiver's buffer (as known by the
transmitter)

Tl temporally halts transmission of data packets when its information indicates
the receiver's buffer will be full when all of the data packets it has sent arrive at
the receiver. Tl resumes sending data packets when state infonnation from the
receiver indicates buffer space in once again available

Control packets and blocks of data packets continue to be exchanged until the
entirt~ message has been acknowledged by the receiver

RJ terminates the connection if data packet is not received within the required
time limit

The basic operations perfonned in Mode I are similar to those explained in

Chapter V for SNR transferring data using Mode 2. The primary difference is that in

Mode 1 errors are ignored. As a result, retransmission of data packets and all the

associated processing needed to accomplish retransmission is omitted. There are six areas

impacted significantly

1 In Mode I, TI sends data packets as along as (buffer_uvailablCtranmu"" > 0)
is true. In Mode 2 new data packets are transmitted when the retransmission
of a block of data packets is not required and the predicate
(buffer_available"on ... ",,,, - NOU > 0) is true

2 The retransmission table (LVP) is not maintained in Mode I

3 In Mode 1, T3 remains in state 1 Therefore transmitter state packets are not
sent to the receiver

4 R I stores, without processing, data packets in the buffer for the host to
retrieve, It does no processing of the data packets since errors are ignored

5 R2 remains in state 2 since a control packet is never received from the
transmitter (because of number 3 above)

6 Since data packets are not processed by the receiver (see number 4 above), no
meaningful status information other than buffer space available can be sent in
control packets by R3

The differences in these six areas simplity considerable, as compared to Mode 2,

the behavior and the Murphi description for Mode 1

D. PROPERTIES

The primary safety property for SNR operating with only flow control is, the

receiver 's buffer must not overflow That is the condition (buffer _ availabie,<c<, ... ;:>: 0)

must always be true

E. MURPHI DESCRIPTION

The Murphi description for SNR's data transfer phase operating in Mode I was

developed with three goals in mind

I. The description must correctly characterize the behavior of Mode I.

2 The description should serve as the groundwork for SNR's data transfer phase
operating in any mode (allow scaling up to Mode 2)

3 The description should be as simple as possible (to enhance its
understandably), Only those actions specifically required for flow control
should be implemented and the number of variables kept to the absolute
minimum (to reduce the size of the state space)

A faci important to achieving goal number three above is: flow control is

accomplish in SNR by managing blocks of data packets. As a result, the state space is

reduced since the description can be based on data blocks and the variables and data

structures needed for tracking individual data packets can be eliminated

Displayed on the next six pages is the Murphi description for Mode I , At this

point the reader has been exposed to numerous descriptions written in the Murphi

Descriptive Language and much of this description should be familiar Therefore only a

few points specific to this particular description are covered below

The name of each rule has been formal\ed to facilitate understanding the purpose

of the rule as follows

machine identification. description of guard or action for rule· current stalt: oj

machine

For example: "Rl - receive data packet - 1'51" indicates this is a rule for machine Rl, the

body of the rule is executed when a data packet is received, and R l must be in state I

(1'5 1) for the rule to fire

In this description T_CHAN and R_CHAN are implemented as circular arrays

Each element of T _CHAN can contain either a block of data packets or is empty

Like\'\1se each element ofR_CHAN contains a receiver control packet or is empty

Again, the network's propagation delay is ignort:d. (Note the size of the arrays is only

two elements, This is because these data structures contribute to the overall state space

Increasing their size significantly impacts the state space.)

The description also contains bold type and italicized code, When the bold lype

code is removed and the italicized code added, an alternate implementation based on the

SCM specification from {McAr92] is cr~ted . The specification as given in [McAr92] is

examined because the design of SNR, with flow control based strictly on the variable

buffer_available, is flawed . See Section F beJow for a full explanation

Const
chan_ClIp: 1;
message_size:J:
ntaX_time_intel'\'3.1: 8:
revr buffer size: 1~
scoWtUim:- 11:

DedaratioDs

- channel capacity in blocks
-- number of blocks in message
-- maximum change in k
--size of J'C\-T buffer
-- upper bound on the value of scount
- connection terminated if scount reaches this value

Type
~'Ounter_type : 0 . .30;
timc_illlcrvaU:Ype: O. max_tilrn:_imcp,al;
buffer_type: -L.n;VJ_buffer_size;
block _ ~ type: 0., message_size:; _ basic counter type for blocks and block sequence numbers

T_states_.typc: Enum {tsl, ts2 , 153, ts4, tsS, ts6L
R_st3tes_type: Enurn IT'Sl , rs2. rs3, rs4} ;
chan slot: O .. (ehml cap - I);

T~keuype : Eo;;-m {none_T, datapac);
RJIIleket_lypC: Enum {nonc_R. conpae};

T _Packet_record"
Record

packet_kind: TJIIlckeuype; - kinds of packet
- (NOUj :ifIq_ nllm. block seqJYI>e; - packet sequence number

End;

packet_kind: R --.JXlckeUH";;; - kind of packet
-- (NOU) LW_R: block_seq_type; - belov.' LW_R all blocks received
butler_avail: buffer_type; -rcvrbutferstatus

End;

YM
Tl _state: T_statcs_type;
T2_state: T_s\atc5_type;
Rl_state:R_s\ateUYpe;
RJ_SWte: R_states_Iype:

T CHAN: T CHAN type; -- communication challl\CI from xtmr to revr
R ~ CHAN: R = CHA"(type; - communication channel from revr to xtmr
xtmt _ eruCfe: chao_slot; - transmitter end of T _CHAN
ro.T end TC: chan slot: - receiver end ofT CHAN
~ endRe:c~ slot; -traosmittcr endofR_CHAN
rC\-'r _cnd jK: chan _sIOI: - receiver end of R _ CHAN

kJ: timc_interval_tHJe: -value of time interval at xtmr
k_R: timeJnterval_type: -valucof timc intcr\'al al rcvr
late~1_ Tpacket: T _Packet_record; - block at revr fTOrn xlmr
la\est_Rpackcl: R_Packet_rccord; -control packet at xtmr from revr
blk_se~ num: block_seq..lYpe: -- seq nurn for entire block

OUTBUF: block _~t)'pt; - contains message to be senl
buffer_avail buJIer_t)'pt; - buffer space available in reVI
buffer_avail_T: buffer_type; - valuc at Xlmr
--(N()L~.'·.'OU" block_seq rype . --numbcr of blocks outstanding

lIW_T. block_SC(lJyPC:
LW_R: block_se<LtypC:
L \\' _ T, block _ se<LJype:

T _busy: Boolean:
R_busy: Boolcan;
scouut_ R: countef_l~'pe:

count_ R: !imc_inlCl'o'a1_ type:

PROCEDURES

-- blk seq 1/ < UW_T have all been senl
-- bLk seq II < LW_R have ~11 been received
--va\ueofLW_Ta\ rum

--statusofscndingdata packcl!;
- status of receiving data packets
-- counter for di5connect if no flow
- counter for adjusting k_R

'I

Procedure send_blockO; - pJacesbiocks wonh ofdara packets in T _CHAN

VaT
next_Tpackel: T_P'JCketJecord: - next packelat:runr to send

Begin

bik stXLnum :=bJk SC<Lnum -ll:
ne.~_ Tpackct.packel:,.kind :- datapac;
-- (A'OU) next .1'packel. seq •. num , = blk _seq._ nllm

T CHANlxunr end TC] := next Tpackel:
x1~_cnd_TC :~(xI~_cnd_TC:;: \)%chan_Cilp;

UW T:= bIk._SCG.,..num
- (NOU) NOU '-- NOli + 1
OUTHL'F := OUTHUf • I:

1' _ _ rc:ceivc_l'Onpac __ '1

Procedure reccivc_conpacO: .. x\mr receives colltrm packet form reVI

Begin

latesl_Rpacket :'" R_CHAN[xtnu_end_RC];
R_CHAN[xtmr_erntRC].packeU<.ind:" none_R;
xtmr_end_RC : ~ (xtnlI_end_RC + J) ~q chan_cap; - consumes packet

receive block

Procedure receh'e_bJockO; - rew receives an entire block of data packets

Begin

latest Tpackct:~ T CHk'l[rcvr end TCj;
T_CHAN[rcvr_end=TCj.pad::etj,ind:- ooneJ;
rC'.'_end_TC : .. (rcvr_cnd_TC + I) %ehan_C3P;

End; -- receive_block

Procedure stoIe_b1ockO; - makes block available to rc-.'rhost

Begin

Begin
--load data io packet
next_Rpackel.packet_kind:= conpac;
-- (NOU) next RpackuLW R := LW R:
next_Rpacket.burrer_avail ::;;. buffer_;vail;

- place packet in channel
R CHAN[rC'., end ReI : ~ next RpackCl;
r~r_end_RC:; (n.-.T_end_RC + - I) % chan_C3P:

RULES

1* Tltrausitions

Ruk "TI -transmit possible - t5 \"

(TI state = l~l) & (buffer a~ail T:> 0)
- -- (}IOIJ) ((f b;;fjer _ ;;"ail- }o/OU)

> 0)
~>

Tl_state ... t.s4;
End,

Rulc"Tl-trau5mitblocl t.s4"

(Tl_stale = 154) & (OlITBUF > 0)

send bloclO;
T_tm~~, :"" UUe;
Tl_state -= lsi;

Eod

T2uansitions

Rule"T2 -reccivc rv.'I stat e info-154"

(T2state - ts4)&
(R_CliAN[xtnu_end_RC].p;;ckct_kirKl =
conpac)
=>

rO!l.;eive_conpacO;
T2 state =155

End;-

Rule "T2 - update into about rv.'r - 155"

(l'2_~talc ~ ts5)
~>

-- update infonnatioo at .xtrnr
-- (NOL~ LW T ,- Ialm RpackerLW R
butlcr_3\'ail T;~ Jaleslj ipacketbufIer_3vad;

T2 state " Wi;
End;

Rulc "T2-goback tots4-\S6"

T2_staIC :- L\4;

End;

Rl transitions

Rule"RI-rcccivCdatapackct-Isl"

(R l stalc - rsl)&
(T _ CHANIK-vr_cmC RC],p;;cketJLind
datap;;C)

receive bloclO;
R_bus}.--truc;
Rl stale ;= 11;2;

End;-

Rulc"Rl-processdatapacket - rs2"

RI state := rs3;
End, -

Rulc"RI-storedatapackct- Is3"

(R I_state ~ 11;3) _. (}IOC? &
-- (latesl_Tpacket,seq_"um > LW_R _ I)

store blockO;
RI s1aIC:=ISl

End;-

rcvrhost
-- included 10 simulate action of the K-vr's host
Rule "rcmo,-c p;;cket from buffe,"

buffcr_avail < 'c\'I_buffer_sizc
~>

bufl:er_avail=buffcr_3vail+ I;
end;

· RJ Iransitions

Rulc"RJ-clock_tick- rsl"

1'00001 R; E l'OOunl R + l ~

R3 state : ~rs2: -
End;-

Rulc"RJ noiOOsy- r52"

(R3_state - rs2) & (R_busy= false)
~>

counl_R:ccounl_R + I;
R3 stale := rs3:

End;-

Rule "RJ-OO)1"- rs2"

RJ_state; - rs4;
End.;

RJ stale :- rsi;
End;-

(R3_statc = rs3) & (counl_R = k_R)
==>

Irk R < max time inter/al Then
k,=-R ;= k_R-" 2;:

Endil;

RJ slate :E r54;
EOO;-

Rule"RJ sendrcvrstate- r54"

Rule "RJ - disconnect - r54·

(R3_stale - r54)& (scount_R = scounUim)

error "disconnect":

End;

TI_s1.a!e : - tsJ ~

T2_s1.ate :~ ts4~

RI_S1..i1e: = rsJ;
R3_statc: oo tsl ;

Starls1.alc

For cs: chan_slot Do -- fill channels with cmpty packets
T_CHAN[cs).packeU<ind:- none_T;
- (NOL~ T_ CHANfcsj.si!q_ num . - 0;
R OiA."l jcs].packet k:ind:= none R;
- -(NOU)R CHAN{:Sj.LW R-ii;
R CHAN[~J,bulTet a"aiJ :-: n:vr buffer size;

Endior; - --

xtmr end TC :>" 0;
rC\·t_~_TC= 0;
lItmr_en<tRC : ~O;

tC\,t cnd RC '=0;
latcst_ Tpaeket,packcUond : ~ nonc_ T;
-- (NOU) lali!sl_Tpocket.seq_num: - 0;
13tC!;t_ RpackC1 . packet)~ind oo nonc_R;
-- (NOU) IOlesl_Rpockel,LW_R , - 0
latest_Rpacket.buffer_3vail := fC\'J_buffer _size;
k_T:= 1;
k_R:= I ;
blk_se<Lnum :~ O;

OliLBUF :- messagc_size;

~;~E~6J.~~~~~;~~~£;
UW_T :=O;
LW_R :" 0;
LW_T :=0;
T_M)' :"' false:
R_busy := false;
scount R :- 0,
COWl! R:=O;

End; -

Inv;uiant '- no buffer overflow -'
buffcr_a\'ai l > -I ; -- Q\o'crflow occurs when bufti:r space is zero

F. RESULTS

The data transfer phase of SNR operating with flow control only (Mode I) does

not behave as desired. Two problems were discovered

1, The receiver's buffer can overflow

2 The improper termination of the connection can occur

Mode 0 also exhibits problem number two, State space explosion did not prevent

verification of Mode lusing the description based on [NRS90] or based on [McAr92]

However, the size of the channels and message must be severely restricted to avoid

significantly increasing the state space. The errors discovered in the design of Mode I and

state space explosion are discussed in greater detail below

1. Buffer Overflow

The first problem arises because the variable buffer _ availableu.........;"", used to

prevent does buffer overflow does not reflect the current status of the buffer space

available at the receiver. In Mode 1,11 checks that the value ofbuffer_available--.m"" is

greater than zero 0, sends a new block of data packets and then decrements

buffer _ availabler,..",.";,,.,.. Data blocks continue to be transmitted by T I until

buffer _ availabl~.......mc. reaches zero. The problem occurs when R3 sends a control packet

to T2 just prior to Rl storing some number of data packets in the receiver's buffer. The

control packet sent by R3 in this situation contains a value for the space available in the

buffer that reflects space in the buffer subsequent to R I storing data packets_ The value of

buffer _ availab1e.......rollor is updated by T2 using information that indicated there is more

space in the buffer than actually exist. So, ifbuffer _ availabl~_ was zero it will be set

to a value larger than the actual space available in the buffer. T I checks and finds

buffer _lIvailablev-- > 0, so TI resumes sending blocks of dlltll packets If the host

linked to the receiver has not yet removed any packets from the buffer prior to the arrival

of the latest batch of data blocks, the capacity of the receiver's buffer \I:ill he exceed. The

following example uses an arbitrary ~izcd message and buffer to illustrates how huffcr

overflow arises

Assume
The transmitter has 100 blocks to send
The Tccciver'sbuffer capacity is 10 blocks

lrutial Conditions

Transmillcr Recei,'cr
Blocks to Transmit 100 BlocksReccivcd
buffcr availabl 10 buffcr :n'ailabk\-,..,-

Tl sends 10 blocks of data packelS

Transmitter Receiver
Blocks to Transmit 90 Blocks Received 0
buffer availablc.,..,..._ 0 buffer available,...i,,,, 10

RJ sends a control packet ",ith a \'aiue of 10 in the buffer_available field.

Transmitter Receiver
Blocl:s to Transmit 9() Blocks Rtteived
buffcr availabl 0 buffer availabk,.", !O

Thc aata blocks arrivc at RI and are place in thc buffer

Blocks to Transmi t 90 BlocksRecei,'C(j 10
bulJer availabl""_jn" 0 buffcr avai.l3blc,..,.;.~

The receh'er's host removes 3 blocks from the butTer

Transmittcr Receiver
Blocks to Transmit !}() Blocks Received
buffer availahl 0 buffer available.w~,..,-

T2 receives the control packets and updates buffer_available...n.-..,

Transmiucr Receivcr
Rlocks to Transmit Blocks R.:ceived 10
buffer a...ailabl \0 buffer 3vailabl 3

1'1 5Cnds 10 more blocks

Transmitter
Rlocksto Transmit

Receivcr
Bloch Received
buffer availabl ~.

The receiver's hoSL removes 3 more blocks from the OOffer.

Transmitter Receh-er
Blocks to Transmit 80 Blocks Rccci,'oo 10
buffer available buffer 9vailabl i.

Rt receives 10 data blocks, 6 are placed in the buffer. The remaining 4- blocks overflow the

The trace of the execution path produced by Murphi for this design error is provided in

Appendix B

To prevent buffer overflow the condition on the transition from state I to state 4 in

machine Tl must be changed. If the predicate (buffer_availabl"'uorumittor - NOU > 0) is used

in place of (buffer _ availabl~ > 0), the overflow problem is eliminated. In addition

to this change in T I, the sequence number of the most recent blocks processed by R I

must be send to T2 by R3 in the receiver control packet. This infonnation is then used to

update NOU. Removing the bold typ" faced code in the Murplll description and adding

the italicized code produces a description that does not exhibit the buffer over flow

problem. This alternate description for SNR's Mode 1 comes from the specification given

in [McAr92]

2. Undesired Disconnection

The second problem. undesired disconnection, occurs because scounir«d.,,, is never

reset in Mode I. R3 increments SCOUIlt"'<iv<r each time the transition from state I to state

2 is taken. The value of scount,,,,,z,w is checked against its upper bound (scuuni_Iim) in

state 4. If SCQuntroo. ;" , equals .scount _lim then the connection is tenninated at the receiver,

otherwise the data exchange continues. The variable scountr=i_ is only reset to zero by

maehine R2 when a control packet arrives at the receiver from T3. However in Mode I,

T3 never sends a control packet so scounI,.c .. _ is never reset to zero Therefore unless

the message is very short, SCOlln/,,,,,,,-oe, will reach scaunl_lim and RJ will tenninate the

connection prematurely

Tllis problem is masked by buffer overflow when using the Murphi description

based on specification from [NRS90l The alternate description produced from the

specification in [McAr92] does not cause the receiver ' s buffer to overflow As a result,

the error in the design of the receiver's disconnect timer was discovered

3, State Space Es:piosion

State space explosion was avoided in the verification ofSNR's data transfer phase

operating using flow control only by using a very small message, short channels and a tiny

buffer The buffer overflow problems in the description based on [NRS90], was detected

by Murphi after 19,652 states had been explored. The scounl reset problem encounter

when the alternate description (based on specification in [McAr92 J) was used, occurred

after examining 442,369 states. Changing the size of the channel from two to three, in the

alternate description, resulted in over 671,000 states examined prior to detecting the

.~COU1lf error. Adding the extra states and variables required to fully describe SNR's data

transfer phase operating with both flow control and error will significantly increase the

number of states generated by Murphi

VIII. CONCLUSIONS AND RECOMMENDATION

In this thesis the correctness of sI'm. 's design was examined. Key propenies of

SNR's connection establishment phase and dala transfer phase operating in Mode 1 were

identified and verified, A summary of the verification results is present in the first section

oflhi5 chapter. The second section discusses the feasibility of using the Murpru

Verification System for verifying communication protocols, The final section provides

recommendations for completing the verification ofSNR and for enhancing Murphi's

capabilities with respect to protocol verification

A. SUMMARY -- VERIFICATION OF SNR

The design of SNR as presented in [NRS90] appears to contain inconsistencies

Two problems in the actions of the protocol's data transfer phase operating with flow

control only (Mode 1) were detected by Murphi. The first is a violation of the key

property offlow control -- buffer overflow must not occur. The second is a violation of

the basic liveness property applicable to all protocols .- the message is eventually

delivered. Both problems are the result ofimproper coordination between the transmitter

and the receiver

1 The receiver 's buffer can overflow. The strategy expected to halt the
transmission of blocks of data packets prior to exceeding the capacity of
receiver's buffer, does not function as intended. The scheme as specified fails
to take into account that there may be data blocks in transit (sent by the
transmitter but have not yet arrived at the receiver). In this situation each
individual machine functions properly but it is the coordination between the
transmitter and receiver that is flawed

2 The network connection between the transmitter and receiver can be
terminated unexpectedly by the receiver The connection termination timer
implemented in machine RJ functions as exp«;ted, however the condition that
resets this counter never occurs. The receiver only reset the timer when it
receives a control packet from the transmitter. However, when SNR is
operating in Mode I, the transmitter never sends a control packet. The
interaction expected by the receiver with the transmitter does not take place

The problem detected in the SCM specification of the connection establishment

phase [Tipi931, where the transmitter is ready to send data but the receiver has terminated

the connection, is not considered serious Even though the connection establishment

phase seems to exhibit incorrect behavior, actions in the data transfer phase result in the

transmitter also terminating the connection and all machines reset to their init ial

conditions

The verification of SNR's data transfer phase operating with both error and flow

control (Mode 2) was not completed due to difficulties encountered during the

examination of Mode I . These issues are discussed in the next section

B. APPLYING MURPHI TO PROTOCOLS

Murphi was used successfully to verify properties of the connection establishment

phase and the data transfer pnase operating in Mode 0 and Mode I. It appears possible

but very difficult to apply Murphi to SNR' s data transfer phase operating in Mode 2 and

to the entire protocol (using a Murphi description that includes all phases and modes)

Addressed below are issues related specifically to protocol verification with Murphi and

limitations of Murphi in general.

The prevailing models used for protocols cmploy finite state machines and shared

variables. For some asynchronous concurrent processes, the shared variables are relatively

simple and easily implemented in Murphi's Descriptive Language, However for protocols,

a network channel when included as one of the shared variables adds significantly to the

complexity of the Murphi description. Three difficulties arises when implementing

communication channel in Murphi .

I Implementing the channel as an array of records (each array element is a slot
for a packet and each of the record's field corresponds to a packet field) or a
similar data structure adds a very large number of states to the state space. For
example. a full description of SNR would requires a minimum channel length
off OUT slots (two blocks of two packets) with each slol containing six fields.
The domain of each field varies and depends on the actual values used in the
description, however if roughly the same magnitude as used for the
description in Chapter VB is assumed, then the number of states contributed by

the channels alone is approximately 7,000 states. Remember changing the
value of any field of one of the channel slots changes the global state of the
protocol being checked

2 Real network channels arc unreliable. They lose packets, corrupt data, and
reorder packets. An accurate implementation must simulation network
introduced en-ors

J Propagation delay is inherit in networks, The implementation should account
for the time delay associated with the arrival of packet at their destination

A clock mechanism to properly simulate the value of variable clock _lick was not

required for the work done in this thesis. However, when all ofSNR's machines are

included in the Murphi description, it appears clock _lick will be required to accurately

characterize SNR behavior. A practical implementation of a clock mechanism in Murphi

should be developed and tested

Once deadlock is reached on any execution path, verification halts and other paths

arc not checked. Tht:re is no simple method to ensure the first deadlock encountered is

not masking another deadlocked path, Checking all paths for deadlock requires either the

use of specific invariants coupled with disabling the detection of deadlock (a option of

Murphi ' s special purpose verifier) or conditions causing deadlock must be con-ected as

they are detected. Under some conditions selecting a depth-first search strategy may

uncover a deadlock different from one reached using a breadth-first search

When an invariant fails, verification halts. If there are other invariants listed in the

description after the one that failed, they are not tested, To check other invariants, the

failing invariant ntust be removed and then the verification started again. This is really

only an annoyance vice an actual limitation

Overall Murphi is fairly easy to use. Producing an accurate Murphi description

from a specification can be fairly challenging, (However translating a SCM specification,

with its guarded transitions, into Murphi's descriptive language is straight forward,) The

most difficult task is con-cctly expressing the desired invariants. Once this is done initial

analysis can start immediately. Interpreting Murphi's output is not difficult, however as

the number of states increases detecting implementation errors and identifYing their source

becomes extremely tedious

C. FURTHER RESEARCH OPPORTlINITIES

1. SNR

The primary opportunity to expand upon the groundwork established with this

thesis is to complete the verification of SNR, First the a single source specification must

be written. The differences between the various documents describing SNR should be

resolved and their content synthesized into a comprehensive specification, This master

specification could then be analyzed and modified as design flaws are discovered. After

modification each new version should be reanalyzed. The cycle should continue until the

protocol exhibits the desired behavior. Specific behavior recommended to be checked

include

• Examine the situation where the receiver's buffer is full of partial blocks (i.e"
blocks missing one or more packets), In this situation, none of the blocks will
be acknowledged so retransmission is required. However since the buffer is
full, retransmission can not occur, It appears deadlock will occur, does it?

Does the protocol function properly when control packets containing erroneous
information (conupted by the channel) are encountered?

What happens if the values of Tin in the transmitter and Ii. in the receiver differ
significantly? Does an unexpected disconnect occurs?

Investigate self stabilization in SNR (If placed in an unsafe state, eventual the
protocol reaches a safe state.) The originator of SNR claim SNR is self
stabilizing in paragraph Vll of [NRS90] " Is the periodic exchange of state
information sufficient to recover from an unexpected condition, such as a
momentary failure ofT3?

2. Mllrphi

Two areas within the context ofMurphi to explore further are" I) support of

communication channels and 2) using Murphi to investigate self stabilization

It would be beneficial to eliminate network channels from the global state space

and allow real network conditions to be generated. This could be accomplished by

incorporating data channels as part ofthe underlying implementation ofMurphi. It would

allow the user to focus on the protocol being verified, vice the modeling and

implementation of the network. The user would be reasonably sure thai the channels are

free of errors, and that any errors encountered were in the protocol under development

To permit thc verification of various protocols the chalUlels should be able to be tailored

by the user, A channel implementation should include the following controllable

parameters

Type of chalUlel -- simplex, duplex, or multipaths -- betwt:en each node

Number of nodes comprising the network

Type of errors the channel could inject, such as data loss, garbling of data, lost
packets, reordering of packets, unanticipated disconnection, etc

• Error injection rate

• Channel capacity and data rate.

• Prorogation delay

• Type of network -- datagram or virtual circuit

It would be interesting to explore further how an automatic verifier such as Murphi

could be exploited tor examining self stabilization of a concurrent system. Murphi can be

used to determine is a system placed in an unsafe state reaches a safe state The steps are

• Generate the description for the concurrent system

• Write an invariant for safe states

• Negate the invariant so that when in an unsafe state the invariant is now true
and is violated when a safe state is entered

Use the startstate construct to begin the verification process in an unsafe state

Run Murphi from an unsale state and violation of the negation of the invariant
will indicate when a safe state has been entered.

The problem comes in generating all possible unsafe state to be tested as start stales

APPENDIX A. DEADLOCK EXECUTION TRACE

Murphi Beta Release 2.735 (With Symmetry)
finite-stale ConcuncO\ S}'Slem Verifier

Copyright (C) 1992, 199)
by the Board ofTruSlCl,:!; of Leland Stanford Junior Univcrsit)'

This program should be regarded as a DEBUGGING aid 001 as a
ccrtifierofwrreo;tncss
Call with the ·1 nag or read the license Hie for leons
and conditions of Il.<;e

RUD this program wjth • ,h" for the list of options.

Bugs, questions. and comments should be dirocted to

'murphi@S/1OQ;lc_s\anford.,edu"

Murphi compiler last modified date: Apr 14 1994
Includefileo; last modified date: Apr 14 1994

Algorithm
Vcrificationbybreadtb fustsean.:h
with s)'mmctry algorithm I - fast canonicalizatioll

Memoryusagc'

~ The size of each state is 10 bits (rounded up \0 2 bytes)
• Tbe memOf}" allocated for the hash table is 2 lIA.b).1cs
With two words of overhead per stale, the maximum size of
the state space is 15)871 stales
• Usc option "-k" or "om" to increase this, if rn:ccssary

• Capadty in queue for breadth-flrSI search: Jl!467 states
• ClLange the constant gPerccnlActiveStatcs in mu~ verifierb
to increase this, ifneccssary

Verbose option :;eleeled_ The following is the detailed prog,res~

FiringSlat1!;tale SlartSlalCO
ObtainedSlalC
PI:Ll_l
P2:L2 I
CI 1-

C2: 1

Unpacking stalC from qucue
PI:Ll_I
P2:L2 I
CI 1-

C2 : 1

The follov.'i ng next SIlIIC5 are obtaioed

Firing lUle 2P non"riticaJ sectioo
Obtainedstatc
PI :Ll_I

Cil
C2 : I

Firing rule PI non-critical section
OJtaincdSlate
PI:Ll 2
P2 :U-1
CI 1-

C2: 1

Unpacking Slale from queue
PI:LI I
P2:U)
C I : I
C2: I

The following next Slales arc obtained

f iring IUlc P2 assign CI 0
Obtainedslale
PI:LI _I
P2:U_3
C l : I
C2 : 0

Fi ring rule PI non-critical sa;lion
ObcaillCdstate
PILI_2
P2 .U 2
CI]-

el : I

Unpacking state from queue
P I:LI2
P2 .u -,
Cl : ,-
C2 : I

The following next states are obtained

Fi ring rule 2P non-criticai so:;tion
Obtamed stale
PI:L1 2
P2:L2- 2
Cl]-
C2: I

Firing rulePl assign Cl 0
Obtaincdstale
PI:Ll 3
P2:U= 1
CI : 0
C1 : I

Unpacking sUIte from queue
P I:Ll_ 1
P2: L23
CI " [-

C2. 0

The follo\\oing next stales are obtained

Firing rulcP2 wail
Ob!ainedstate
PILI I
P2:U - 4
CI [-

el :0

101

Firing rule PI non-critieal section
Obtaincdstatc"
PI:L1 2
P2:U-3
CI 1-

C2 :0

Unpacking Slate from queue
Pl:L1_2
P2U 2
CI 1-

C2 : 1

The following next stales are obtained:

firing rule P2 assign Cl 0
Obtaincdslate
PI :Ll_2
P2:L2 3
CI : 1-

C2 : 0

Firing rulc PI assignCI 0
ObtaincdSlatc:
PI:Ll_3
P2:L2 2
Cl :0-
C2: 1

Unpacking slate from queuc
PI:L1_3
P2:L2 1
CI . O-
CLI

TIlefoUowing ncX\ Statesareoblaincd:

Firing rule 2P non-critical section
ObI.aincdstale
PJ:Ll 3
P2:L2)
Cl :0
C2 : I

102

Firing rule PI wait
ObI.aincdSlale
Pi:U 4
P2:L2=1
Cl 0
C2 : I

Unpacking stale from queUC"
PILI I
P2 :L2-"
CI 1-

C2 : 0

The following nexl "~lales are obtained"

Firing rule critical section
Obtained state
PILI I
P2:L2-5
Cl 1-
C2 :0

Firing rule PI non-<:riticalsection
ObI.ainedstate:
PILI 2
P2:U-4
Cl 1-
C2 :0

Unpacking slale from queue
PI:U _2
P2 :L2 3
CI 1-

C2 : 0

The following next stales are obtained:

Firing rule P2 wait
Obt.aincdstate
PI :LI 2
P2:L2- 4
CI I-

n: 0

Firing rule PI assign Cl 0
Obtainedstatc·
PI:Li_3
P2:L2 3
CI.O-
C2 :0

Unpacking stale from queue
PI:Li 3
P2:L2-2
CI . O-

C2 : I

The following nt''''\ stales are obtained

Firing rule P2 assign CI 0
Clblainedstate
Pl:Ll_J
P2 :L2 3
Cl.O-
C2 :0

Firing rule PI wait
Obtained state
Pl :Li 4
P2:L2)
Cl : 0
C2: I

Unpacking stale from queue
PILI 4
P2:L2 I
CI : 0-

C2: I

The followiug next stales arc obtained·

Firing rule 2P lIon-crilica] section
Obtained state:
PI :Li _4
P2:L2 2
CI" 0-
Cl; I

""

Firing rule critical section
Obtaincdstatc
PI:Ll_5

C1 0
C2 1

UnpackIng stalt: from queue
PILI_I
P2:U 5
CI 1-
C2 :0

The follo\\ing next states are ohlained

firing rule P2 assign C2 I
Obtained state
P I:L1_ 1
P2:L2 I
CI 1-
C2 . 1

firing rule PI non-critlcal section
Obtaincdstalc
PI:Ll_2

Cl 1

Unpack.ing stalK from qu~ue
P1:Ll_2

Cl1
C2 :0

rhc following ncxt states are obtained

Firing rule criticalscclion
OblaincdSlatc
PiLl 1
P2:Ll-S
Cl]-

Cl: 0

Firing rule PI assign CI 0
Obtained state
PI:LI.)
P2:L2 4
CI: 0-
C20

Unpacking state from qucue
Pl:Ll_3

Cl :0
C2:0

Th~ following next states arc obtained

Firing rule P2 wait
Obtained state
PILI)
P2:U-)
Ci: O-

n: 0

Firing rule PI wait
Obtaincdstate
Pl:Ll_3

CI ;0
Cl : 0

Result
Deadlocked state fOlllld

Stale Spacc Explored
17 Slates. Ui rules fired in 0.40s

Rules Information
Fired I times - Rule "P2 assign C2 I"
Fired 2 times . Rule " critical SCl;tioo "
Fired 3 times - Rule"P2 wail"
Fired 3 times - Rule"P2 as1;ign CI O'
FlTed 4 tinlcs - Rule '2P non-critical section'
Fired 0 times - Rule 'P assign C I"
Fired I times - Rule' critical section'
Fired "3 times - Rule 'PI wait"
Fircd4limcs -Rulc'PlassignC10'
Fired 5 times - Rul", 'PI non-critical section"

APPENDIX B. BUFFER OVERFLOW EXECUTION TRACE

Murphi Beta Release 2 ,73S (With Symmetry)
Finite-~tate Con~urrent System Verifier
Copyright (C) 1992, 1993
by the Board ofTruslees of Leland Stanford Junior University

This program should be regarded as a DEBUGGrNG aid, not as a
certifierofcorTectness
('-aU with the -I flag or read the license file for terms
and conditionsofust:
Bugs, questions, and conuncnlS should be directed 10
"murpb.i@snoolc,stanford,edu'
\olurphi compiler lasl modified date . Apr 14 1994
Include files last modified daIC. Apr 14 1994

Algorithm
Verificationh).'breadthfir~tsearch

with symmetry algonUun I -- fasl canonicauUltion
Memory usage

• The size of each state is 83 bilS (rounded up 10 II bj.1es)
• The memory allocated for the hash table is 2 Mbytes

Wilh two words of ovcrhead per Slate, the maximum size of
lhe stale spacc is 952J9 stales
• Usc: oplion "ok" or "-m" 10 increase lhis. if necessary

• Capacily in queue forbreadtb-flrstscarch : 2J809staICS
Progress Rcpon

1000 Slates explored in 1,805, with 2125 rules fired and 321 stales in the qucue
2000 states explored in 3, 165, "ith4740 rules fired and 603 slates in the queue
3000 stales explored in 457s, with 7344 rules rued and 864 states in Ihe queue
4000 stat.esexplored in 6,OOs. "ith 9985 rules fired and 1113 stales in the queue
5000 slates explored in 7.49s, "ith 12746 rules frredand 1326 stales in the queuc
(j()()() states explon:d in 8 , 99~. "ith 15501 ruks fired and 1536 states in the queue
7000 stales explored in 10,375. "ilh UI025 rules fir<:dand IS]4 stales in the queue
8000 states explored in 1190s, "ilb 20845 rules fire<land]997 states in Ihe queuc
9000 stales explored ill 13J2s, ",ith 23451 rules fired and 2259 stales in Ihequcue.
10000 stales explored in 14,725. with 26034 rules fi red and 25 13 slates in the queue
11000 stales explored in 16,235, "ilh 2S~16 rules fired and 2724 stales in the queue
12000 states explored in 17,64s, with 3144] rules fired and 2989 states in Ibequcue
13000 stales explored in 19,04s, wilh 33996 rules fired and 3244 states in the queue
14000 stales explored in 20.515. wilb 36690 ruIcs rrrcdllnd 3489 stales in Ihe queue
15000 stales explored In 22.015, with 19 .. 95 rules fired and 3722 stales m the queue
16000 ~tales explored in 23 44s. "'ith 42135 rules fired and 3983 states in the queue
17000 states explored in 24&4s. ",~ th 44713 rule:> fired and 4239 stales In the queue
18000 stales cxplored in 26.2 Is, with 47278 rules fired and 4552 states in the queue
19000 states explored in 27,725. with 50072 rules fired and 4757 states in lhe queue.

107

The following is the error trace for the error

Invariant - no buffer overflow - failed.

StartSlaie SlartslaleO fired
TI_stale:\sI
T2_Slale:ts4
Rl .. sta\c:rsl
R3 statersl
T -'1t~N]O]. packeU,jnd: none _ T
T CHAN[lj.paekcl kind:none T
R = CHANIO]. packet)dnd:none = R
R_CHAN]OJ.buffer_3vai l .2
R _ CHAN[IJ.p:ockct _ kind:nonc _ R
R_CHAN[I] .butTcr_3vail : 2
X1mr_end_TC : 0
revr end TC:O
~_cnd_RC : O
ren end RC: 0
k T~ 1 -

k=R: I
latesl_Tpacket.packct_kind:none_T
latcs\ Rpaekct .packcUund:nom:_R
13\cSI_Rpackct.butTer_avail : 2
blk_5ctLnum : 0
OUTBUF : 3
buffer_avaiJ: 2
buffer avail T: 2
uw f.o -
LW~R: 0
LW T:O
1'_~· : false
R_bw;y : false
soount_R : 0
oounl_R : 0

Rule R3 - clock_tick - rsl fired.
R3 Slalc:rs2
scOOnt_R. I

RuleTl -transmit possible - lsi fired
Tl_state:ts4

Rule Tl - transmit block - ts4 fued
1'1 state:ts]
T_CHAN[Oj.packct_kind:dalapac
xtrnr end TC: J
blk_~n~:]

108

OlTIlnJF: 2
buffer avail T I
UWJ: I -
T_busy : true

Rule RI - roceivc data pa~kel rsl fired
RI stale:rs2
Tj:HAN[O] packel_kind:none_T
revr end TC: 1
latcm _1'~kel , packet_ kind:datapac
R_bus'i . lrue

RuleRJ -bw.)' - rs2 fired
R,,_stale;rs4

Rule RJ - send reV! ~-tal~ - rs4 fned
RJ stale:rsl
R_CHAl'l[O] .packct kindconpac
rc-.T end RC: I
R~ :taJse

RuleRJ-clock_tid.- rsl fired
RJ_~tat~ : rs 2

5Count_R ; Z

Rule RI - process data packel- rs2 fired
RI_slate:rs3

RuleRI-,loredatapaekcl - rs3 fired
RI_SIalc: rsl
buffer_avail: I

Rule '1'2 - receive Ievr Slate info - IS.:! fired
T2 sta!c:Is5
R j::HAN[O] .packd_ kind:none_ R
xtnlJ_end_RC : I
lalcst_Rpad:ct,packcl_kind:conpac

Rul~ '1'2 - update info about reVI - ts5 fired
r2_state:1S6
buffer_ilvail_T : 2

Rule TI - transmit possible - lSI fired

Rule T1 - transmit block ts4 fired.
TI state:tsl
T J:HAN[I [. packet ~ kind:datapac
Xlmr end TC: 0
blk~~~um:2
OUTBUF : I
buffer avail T I
UWJ : 2 -

RulcRI - reccivt:datapacket-rslfm:d
RI state:rs2
T_CHAN[I J ,packet_kind:none~ T
rCYr end TC : 0
RJ ;sy :lrue

Rule R3 - busy - rs2 fued
R3~statc:rs4

Rule R3 - send re r state - rfA fued.
R3 statc:rsl
RJRAN[lj.packet_kind:ootlpal;
R .C!lAN[Ij.buffer avail I
re-vT end RC : 0 -
R_~S}':f315C

Rule R I - process data packet - rs2 fired
RI . state:rsJ

Rule Rl - store data packet - rs3 fued
RI~state : rsl

buffer~3vail : 0

RuleTI-uansmitpossiblc tslfircd
TI~state:ts4

Rule TI -transmit block -lS4lired
TI stale:lsl
T _ CHAN[OJ,packet~ kind:datapac
xinu end TC : I
bIk~~mun:3
OVTBUF : 0

110

buffer avail T: 0
UW~T: 3 ~

Rule RI-roceivCdatapackct-rsl fired.
RI S13te:rs2
TJ:HANrOlpackct~kind:none~T
n;vr end TC. I
R~b~ :lrue

Rule Rl-processda13 pacKet- rs2 fired
RI~51"lIe:rs3

RuleRl-store da13paclr;:ct- rsJfired
TI rulle :ts l
T2~st.ate : ts6
RI=st.ale:rs l
R3 st.alc:rsl
T ~CIlA..""rO].packct~kind: nonc~ T
T CHAN[Ij .packet kind:none T
R- CHAN101.packC\~ kind: nonc~R
R=ClIAN101huffcr.JlVail : 2 ~
R~ CHAN[ll.packet_kind:conpac
R CHAN[I].buffcr avail : I
xtmr_cnd_TC: I -
ICVT cnd TC : I

l\~ endRC. 1
n:vrendRC:O
kJ~ I ~

Ja\csl_Tpackel.packet_kind:da13pac
lalest_Rpackel.packc\~kind : ooDpac

lateSl~Rpacket ,buffcr_avail : 2
blk~~nuDl:J
OUTBUF _ 0
buffcr_avail:-l
buffer avail T : O
UW T : 3 -
LW -R : 0

LW=T: 0
T_busy: true
R~busy:true
scount~R : 2

cOWlt_R : 0

End of the error trace

Result

Invariant - no buffer overflow -- failed

Slate Space Explored

19652 states, 51943 rules fired in28.8.ls

Rules Information

Fired 0 times -Rule"R] - disconne;;t- r54"
Fired 1904- times - Rule"RJ · send revr Slate - rs4"
Firedl564times-Rule"RJ-ruodifyk R- r53"
Fired 1556 times - Rule"RJ - wait (cou;t R < J,; R) - rs3"
FiredI126times-Rule"RJ-bu5Y- rs2"- -
Fired 3033 times - Rule "R3 - not busy - rs2"
Fired 5~57limes -Rule"RJ - clock_tick - rsl"
Fired 5900 times - Rule "remove packet from buffer"
Fired 3229 times - Rule "RI -store data packet - rs.1"
Fired 4292 times - Rule "RI - process data packet- rsl"
Fired2116times-RuIe"RI-receivedalapacket - rsl"
Fired 57461imes - Rule"T2 - go rock to 1.S4 -t56"
Fired 2914 limes - Rule "T2 - updale info about revr -1.S~ "
Fired 3714 limes - Rule "T2 - ra;eive revr stale info -l<;4"
Fired 3534 times - Rule"n - transmit block - 154"
Fired 5758 limes - Rule"T1 - transmit possible -l~l'

LIST OF REFERENCES

[Bcn82j Ben-Ari, M" Principlcs"jConClirrenl and Di.,'lribuled Programming,
Prentice-Hal l. 1982

[lk:n90] Ikn-Ari. M., I'n'nciples o[Concurrent and Dis/rilm/cd Programming .
PrenticcHall,199O

[Bt:n93] Ren·Ari, M. , .'VIa/hematica! Logic/or CQmpulerScience, Prentice Hall,
1993

[ChHa92] COOw.l, and Harrison, W , "Compile-time Arullysis of Parallel
Programs that Share Memory", ACU 19th Symposium on Principle.,- of
/'rogramming Languages, 1992

IChHa94] Chow. 1.. and Harrison, W .. "State Sp3I;c Reduction in Abstract Interpretation
of Parallel Programs" IEEE]074-8970/94)994

[CGL92] Clarke, E" Grumberg, 0, and Long, D .• "Model Chocking and
Abstrm:tion",ACM 19th Sympmium on Principles of Programming
Languages, 1992

[DDHY92] Dill. D .. Drexler, A. Hu. A .. and Yang, C. H., '·Pwto<."()l
Verification as a Hardware Design Aid" ,lHHE International Conference on
Computer Design, October 1992

[GoMu91] Gouda, M., and Mullari, K . "Stabilizing Communication Prolocol$" , WFF
Transaction on Computers, Vol . 40. No 4 .• April 1?91

[Gri95] Grier, R.. "Te~ling an Implementation's Confonnarl\;e 10 a Formal
Specification: the SNR Hlgb-Spced Transport Protocol" , M.S , Thesis.
Naval Postgraduate School, Monterey. CA, March 1995

[lpD93] Jp, C. N , and Dill, n" "Better Verification Through Symmetry",
Pro,eedings of the 11th internolional Symposium on Computer
Hardware J)escriplion Langu<11?e and Their Application" Cambridge, \tA,
Octob.:r 1993

[lpDi91] [p, C. N., and Dil!, D" "Efficient Verification of Synunctric Concurrent
Systems" , iEEE inlernalional C(mjerenu On C"mpuler [)e"'ign: VLSI in
Computers and Processors, Cambridge, MA October 1993

[LuTi94j Lundy, G., and Tipici, H., "Specification and Analy~is oflhe SNR High-Speed
Transport Protocol", IFEElACM Tmnsactionson NeTWorking, Vol. 2, r-<o. 5,
O\;tob.:r 1994

[1'.fcAr92]

{McMi92]

[MeDi93]

[Mcz95J

fNR,S90]

rripi93j

[Wan95]

IZha86[

McArthur, R"" "De5ign and Specification ofa High-Speed Transport
Protocol", M,S. Thesis, Naval Postgraduate School, Monterey. CA.,
March 1992.

McMillan, K., The SAIV Syslem DRAFf, Carnegie-Mellon Univcrsity,
February 1992

Ralph Melton, and R., Dill, D., "Murphi Annotated Refcrence Manual" ,
Version 2.735, Stanford Uniwrsity, Novcmber 1993

Mu hound, F., "Implemcntation ofthc SNR High-Speed Tr3nSp.lrt
Prmocol (!he Transmittcr PanF, M.S, Thesis, Naval Postgraduate School,
Monterey, CA, March 1995

Nctravali, A, Roome, W., and Sabnani, K., "Design and Implementation
of a High Speed TranSp.lrt Protocol" , IEEE Transaclions in
Communicalions, Vol, 38, No, ll, November 1990

T ipici, H. , ~Speciflcation and Anal)'Sis ofa High Speed Transport
PrOlocol~, M,S. Thesis, Naval Postgraduate School, Monterey, CA ,
June 1993

Wan, W., "Implementation of the SNR High-Speed Transport Protocol
(!be Receiver Pan)", M.S, Thesis, Naval Postgraduate School, Monlcre)',
CA, March 1995

Zhang, L., "Why TCP Timers Don't Work WeD", Procerdings oflhe
AC\I SlGCOM SympoSium On Communicalions, Archilectures, and
ProlOcois, February 1986

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey, California 93943-5101

Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

Dr. D, Voipano, Code CSNo
Computer Science Department
Naval Postgraduate School
Mo nterey, California 93943

Dr. OM. Lundy, Code CS/Lu
Computer Science nepartment
Naval Postgraduate School
Monterey, California 93943

CDR Carl M Pederson, Jr. , USN
PSC 78 BOX 346
APO AP 96326-0346

Krishan K. Sabnani
AT&T Bell Laboratories
Room4G - 502
10] Crawford's Comer Road
Holmdel, New Jersey 07733

l15

.. 2

.. 1

(

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTf;REY CA 83943-5101

III I llmiifu'lilllllTlb llll
32768003195629 ,

